A Fast Deep Learning ECG Sex Identifier Based on Wavelet RGB Image Classification
<p>Pseudo-orthogonal lead configuration, based on [<a href="#B39-data-08-00097" class="html-bibr">39</a>].</p> "> Figure 2
<p>Heart rate histogram by sex—10 bins.</p> "> Figure 3
<p>Experiment methodology.</p> "> Figure 4
<p>Experiment block diagram, taken from [<a href="#B16-data-08-00097" class="html-bibr">16</a>].</p> "> Figure 5
<p>Experiment architecture.</p> "> Figure 6
<p>Wavelet transformation examples. From four to one heartbeat(s).</p> "> Figure 7
<p>Classifier accuracy vs. heartbeats collected.</p> "> Figure 8
<p>Classification results by best heartbeat collection.</p> "> Figure 9
<p>Comparison of derivative confusion matrix metrics against single-heartbeat results.</p> ">
Abstract
:1. Introduction
- 1.
- In our study, we assessed the accuracy of ECG sex classification while controlling for the number of heartbeats collected. We used a variable time window of up to 4 s for our analysis. It is notable that this type of research has not been conducted according to the previous academic literature.
- 2.
- We found that for higher RR intervals (heart rate in milliseconds), only one heartbeat was required to obtain a better classification rate.
- 3.
- After performing a heart rate time division by bins, we reached an ECG sex classification accuracy mean of 94.82% ± 1.96%. However, we found peaks greater than 96% at some heart rate intervals using our architecture applied to pseudo-orthogonal ECG signal samples. This result used fewer heartbeats in comparison to the methods in previous works.
- 4.
- The proposed methodology achieved faster acquisition, reducing the time by 6.9 s compared to similar research and 21% compared to our previous work.
- This study analyzed only three ECG signals (X, Y, and Z), contrary to the common 12-lead configuration implemented in related works that uses 10 signals.
- Our proposal co-ordinated the deep convolutional neural network model based on the user RR interval, allowing us to obtain results close to those in related works.
- Through wavelet transformation, we used the entire signal waveform, converting the three bipolar signals into one RGB image.
- We extended the signal analysis, which usually takes place with subjects in the resting position, because our database contained a 24-hour record. In fact, although we did not control the person’s stance variable, we achieved significant ECG sex differentiation.
2. Related Work
Ref. | Acc. (%) | Lead | Sample Length (s) | Tech. | Fs (Hz) | Position | Male–Female (%) | Tr. | Ts. Sample | Year |
---|---|---|---|---|---|---|---|---|---|
[17] | 90.4 | 12 | 10 | CNN | 500 | Supine | 52–48 | ∼500 k | ∼275 k | 2019 |
[18] | 92.2 | 12 | N/A | DNN | N/A | N/A | 50.5–49.5 | ∼131 k | ∼68.5 k | 2021 |
[34] | DB1: 91.3 DB2: 86.3 | 12 | 10 | SPAR and KNN | DB1: 1000 DB2: 500 | Resting | DB1: 60–40 DB2: 46–54 | DB1: N = 0.104 k DB2: N = 8.9 k | 2021 |
[35] | 84.9 | 12 | 10 | CNN xresnet 1d101 | 100 | Resting | 52–48 | N = ∼22 k 10-fold: 8 | 2 | 2021 |
[33] | Valid. Int: 89 Ext: 81 and 82 | 12 | 10 | DNN | 250 or 500 | Resting | Tr: N/A Int. valid.: N/A Ext. valid.: 42.6–57.4 | Tr: ∼132 k Int. valid.: 68.5 k Ext. valid.: 7.7 k | 2022 |
[36] | F score: 87 | 12 | 10 | PCLR and Contrastive learning | 250 or 500 | Resting | N/A | N = ∼3229 k 90% | 10% | 2022 |
[16] | 94.4 | 6 | CNN | 200 | Random | 51–49 | ∼3 k | ∼1.3 k | 2022 | |
Own | 94.8 | 6 | CNN | 200 | Random | 51–49 | ∼3 k | ∼1.3 k | 2023 |
3. Materials and Methods
3.1. Database Description
3.2. Methodology
4. Architecture
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional neural network |
DNN | Deep neural network |
KNN | k-nearest neighbors |
PCLR | Patient contrastive learning of representations |
RR | Heart rate |
ROI | Region of interest |
SPAR | Symmetric projection attractor reconstruction |
References
- Little, W.; McGivern, R. Gender, Sex, and Sexuality. 2014. Available online: https://opentextbc.ca/introductiontosociology/chapter/chapter12-gender-sex-and-sexuality/ (accessed on 18 June 2022).
- Webster, M. Gender. 2019. Available online: https://www.merriam-webster.com/dictionary/gender (accessed on 18 June 2022).
- Connellan, J.; Baron-Cohen, S.; Wheelwright, S.; Batki, A.; Ahluwalia, J. Sex differences in human neonatal social perception. Infant Behav. Dev. 2000, 23, 113–118. [Google Scholar] [CrossRef]
- Lippa, R.A. Sex differences in personality traits and gender-related occupational preferences across 53 nations: Testing evolutionary and social-environmental theories. Arch. Sex. Behav. 2008, 39, 619–636. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Kim, K.W.; Hong, H.G.; Koo, J.H.; Kim, M.C.; Park, K.R. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction. Sensors 2017, 17, 637. [Google Scholar] [CrossRef] [PubMed]
- Ghildiyal, A.; Sharma, S.; Verma, I.; Marhatta, U. Age and Gender Predictions using Artificial Intelligence Algorithm. In Proceedings of the 3rd International Conference on Intelligent Sustainable Systems (ICISS’20), Thoothukudi, India, 3–5 December 2020; pp. 371–375. [Google Scholar]
- Tsimperidis, I.; Yucel, C.; Katos, V. Age and Gender as Cyber Attribution Features in Keystroke Dynamic-Based User Classification Processes. Electronics 2021, 10, 835. [Google Scholar] [CrossRef]
- Nguyen-Quoc, H.; Hoang, V.T. Gender recognition based on ear images: A comparative experimental study. In Proceedings of the 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 10–14 December 2020; pp. 451–456. [Google Scholar] [CrossRef]
- Cabra, J.L.; Parra, C.; Trujillo, L. Earprint touchscreen sensoring comparison between hand-crafted features and transfer learning for smartphone authentication. J. Internet Serv. Inf. Secur. JISIS 2022, 12, 16–29. [Google Scholar]
- Ikae, C.; Savoy, J. Gender identification on Twitter. J. Assoc. Inf. Sci. Technol. 2021, 73, 58–69. [Google Scholar] [CrossRef]
- Alkhawaldeh, R.S. DGR: Gender Recognition of Human Speech Using One-Dimensional Conventional Neural Network. Sci. Program. 2019, 2019, 7213717. [Google Scholar] [CrossRef]
- Lee, M.; Lee, J.H.; Kim, D.H. Gender recognition using optimal gait feature based on recursive feature elimination in normal walking. Expert Syst. Appl. 2022, 189, 116040. [Google Scholar] [CrossRef]
- Li, S.Z.; Jain, A.K. Encyclopedia of Biometrics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015; p. 1651. [Google Scholar]
- Moreno-Ospina, J.; Valencia-Quintero, F.; León-García, O.; Steibeck-Domínguez, M.; Moreno-Cáceres, N.; Yandar-Lobon, M. La Industria 4.0, Desde la Perspectiva Organizacional, 1st ed.; Fondo Editorial Universitario Servando Garcés de la Universidad Politécnica Territorial de Falcón Alonso Gamero: Coro, Venezuela, 2019; p. 143. [Google Scholar]
- Cabra, J.; Castro, D.; Colorado, J.; Mendez, D.; Trujillo, L. An IoT Approach for Wireless Sensor Networks Applied to e-Health Environmental Monitoring. In Proceedings of the IEEE 2018 International Congress on Cybermatics, Halifax, Canada, 30 July–3 August 2018; pp. 578–583. [Google Scholar]
- Cabra Lopez, J.L.; Parra, C.; Gomez, L.; Trujillo, L. Sex Recognition through ECG Signals aiming toward Smartphone Authentication. Appl. Sci. 2022, 12, 6573. [Google Scholar] [CrossRef]
- Attia, Z.I.; Friedman, P.A.; Noseworthy, P.A.; Lopez-Jimenez, F.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Munger, T.M.; Asirvatham, S.J.; Scott, C.G.; et al. Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs. Circ. Arrhythmia Electrophysiol. 2019, 12, e007284. [Google Scholar] [CrossRef]
- Siegersma, K.; Van De Leur, R.; Onland-Moret, N.C.; Van Es, R.; Den Ruijter, H.M. Misclassification of sex by deep neural networks reveals novel ECG characteristics that explain a higher risk of mortality in women and in men. Eur. Heart J. 2021, 42, 3162. [Google Scholar] [CrossRef]
- Cabra, J.L.; Parra, C.; Mendez, D.; Trujillo, L. Mechanisms of Authentication toward Habitude Pattern Lock and ECG: An overview. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. JoWUA 2022, 12, 23–67. [Google Scholar]
- Jain, A.K.; Nandakumar, K.; Lu, X.; Park, U. Integrating Faces, Fingerprints, and Soft Biometric Traits for User Recognition. In Proceedings of the 2nd Biometric Authentication ECCV International Workshop (BioAW’04), Prague, Czech Republic, 15 May 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 259–269. [Google Scholar]
- Cabra, J.L.; Mendez, D.; Trujillo, L.C. Wide Machine Learning Algorithms Evaluation Applied to ECG Authentication and Gender Recognition. In Proceedings of the 2nd International Conference on Biometric Engineering and Applications (ICBEA), Amsterdam, The Netherlands, 16–18 May 2018; ACM: New York, NY, USA, 2018; pp. 58–64. [Google Scholar]
- Uwaechia, A.N.; Ramli, D.A. A Comprehensive Survey on ECG Signals as New Biometric Modality for Human Authentication: Recent Advances and Future Challenges. IEEE Access 2021, 9, 2169–3536. [Google Scholar] [CrossRef]
- Cardiology Associates of Michigan. Men Vs. Women: How Their Hearts Differ And What It Means. 2019. Available online: https://www.cardofmich.com/men-women-heart-differences/ (accessed on 28 April 2022).
- Mieszczanska, H.; Pietrasik, G.; Piotrowicz, K.; McNitt, S.; Moss, A.J.; Zareba, W. Gender Related Differences in Electrocardiographic Parameters and Their Association with Cardiac Events in Patients After Myocardial Infarction. Am. J. Cardiol. 2008, 101, 20–24. [Google Scholar] [CrossRef]
- Nakagawa, M.; Ooie, T.; Ou, B.; Ichinose, M.; Yonemochi, H.; Saikawa, T. Gender differences in the dynamics of terminal T wave intervals. Pacing Clin. Electrophysiol. 2004, 27, 769–774. [Google Scholar] [CrossRef]
- Ergin, S.; Uysal, A.K.; Gunal, E.S.; Gunal, S.; Gulmezoglu, M.B. ECG based biometric authentication using ensemble of features. In Proceedings of the 9th Iberian Conference on Information Systems and Technologies (CISTI’14), Barcelona, Spain, 18–21 June 2014; pp. 1274–1279. [Google Scholar]
- Hammad, M.; Iliyasu, A.M.; Subasi, A.; Ho, E.S.L.; El-Latif, A.A.A. A Multitier Deep Learning Model for Arrhythmia Detection. IEEE Trans. Instrum. Meas. 2020, 70, 2502809. [Google Scholar] [CrossRef]
- Habib, A.; Karmakar, C.; Yearwood, J. Impact of ECG Dataset Diversity on Generalization of CNN Model for Detecting QRS Complex. IEEE Access 2019, 7, 93275–93285. [Google Scholar] [CrossRef]
- Dogan, R.O.; Kayikçioglu, T. R-peaks detection with convolutional neural network in electrocardiogram signal. In Proceedings of the 26th Signal Processing and Communications Applications Conference (SIU’18), Izmir, Turkey, 2–5 May 2018; pp. 2029–2032. [Google Scholar]
- Lee, K.J.; Lee, B. End-to-End Deep Learning Architecture for Separating Maternal and Fetal ECGs Using W-Net. IEEE Access 2022, 10, 39782–39788. [Google Scholar] [CrossRef]
- Gupta, K.; Bajaj, V.; Ansari, I.A. OSACN-Net: Automated Classification of Sleep Apnea Using Deep Learning Model and Smoothed Gabor Spectrograms of ECG Signal. IEEE Trans. Instrum. Meas. 2021, 71, 4002109. [Google Scholar] [CrossRef]
- Lee, J.N.; Kwak, K.C. Personal Identification Using a Robust Eigen ECG Network Based on Time-Frequency Representations of ECG Signals. IEEE Access 2019, 7, 48392–48404. [Google Scholar] [CrossRef]
- Siegersma, K.R.; Van de Leur, R.R.; Onland-Moret, N.C.; Leon, D.A.; Diez-Benavente, E.; Rozendaal, L.; Bots, M.L.; Coronel, R.; Appelman, Y.; Hofstra, L.; et al. Deep neural networks reveal novel sex-specific electrocardiographic features relevant for mortality risk. Eur. Heart J. Digit. Health 2022, 3, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Lyle, J.V.; Nandi, M.; Aston, P.J. Symmetric Projection Attractor Reconstruction: Sex Differences in the ECG. Front. Cardiovasc. Med. 2021, 8, 709457. [Google Scholar] [CrossRef] [PubMed]
- Strodthoff, N.; Wagner, P.; Schaeffter, T.; Samek, W. Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL. IEEE J. Biomed. Health Inform. 2021, 25, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Diamant, N.; Reinertsen, E.; Song, S.; Aguirre, A.D.; Stultz, C.M.; Batra, P. Patient contrastive learning: A performant, expressive, and practical approach to electrocardiogram modeling. PLoS Comput. Biol. 2022, 18, e1009862. [Google Scholar] [CrossRef]
- Medical Center University of Rochester. Healthy Individuals. 2005. Available online: http://thew-project.org/database/e-hol-03-0202-003.html (accessed on 17 April 2023).
- Cables and Sensors. 12-Lead ECG Placement Guide with Illustrations. 2016. Available online: https://www.cablesandsensors.com/pages/12-lead-ecg-placement-guide-with-illustrations (accessed on 28 April 2023).
- brgfx. Vistas Frontal y Posterior del Esqueleto Aislado Sobre Fondo Blanco. 2021. Available online: https://www.freepik.es/vector-gratis/vistas-frontal-posterior-esqueleto-aislado-sobre-fondo-blanco_12321197.htm (accessed on 18 June 2022).
- Pokaprakarn, T.; Kitzmiller, R.R.; Moorman, R.; Lake, D.E.; Krishnamurthy, A.K.; Kosorok, M.R. Sequence to Sequence ECG Cardiac Rhythm Classification Using Convolutional Recurrent Neural Networks. IEEE J. Biomed. Health Inform. 2022, 26, 572–580. [Google Scholar] [CrossRef]
- Lai, D.; Fan, X.; Zhang, Y.; Chen, W. Intelligent and Efficient Detection of Life-Threatening Ventricular Arrhythmias in Short Segments of Surface ECG Signals. IEEE Sensors J. 2021, 21, 14110–14120. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 24th Conference on Computer Vision and Pattern Recognition (CVPR’15), New Orleans, LA, USA, 19–24 June 2015; pp. 1–9. [Google Scholar]
- Guerar, M.; Merlo, A.; Migliardi, M. Clickpattern: A pattern lock system resilient to smudge and side-channel attacks. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2017, 8, 64–78. [Google Scholar]
# HB | Bin | Accuracy | Sensitivity | Specificity | Precision |
---|---|---|---|---|---|
4 | 1 | 0.9079 | 0.9586 | 0.8576 | 0.8699 |
3 | 1 | 0.8788 | 0.9455 | 0.8108 | 0.8361 |
2 | 1 | 0.8727 | 0.928 | 0.8157 | 0.8382 |
1 | 1 | 0.8382 | 0.7908 | 0.887 | 0.8781 |
4 | 2 | 0.9221 | 0.9099 | 0.934 | 0.9313 |
3 | 2 | 0.9206 | 0.9667 | 0.8756 | 0.8837 |
2 | 2 | 0.9114 | 0.9212 | 0.9016 | 0.9025 |
1 | 2 | 0.8651 | 0.8254 | 0.9052 | 0.898 |
4 | 3 | 0.9428 | 0.9596 | 0.9263 | 0.9277 |
3 | 3 | 0.9323 | 0.9092 | 0.9554 | 0.9532 |
2 | 3 | 0.9096 | 0.9454 | 0.8741 | 0.8817 |
1 | 3 | 0.9038 | 0.9083 | 0.8993 | 0.8991 |
4 | 4 | 0.9465 | 0.9255 | 0.9671 | 0.9651 |
3 | 4 | 0.9451 | 0.9687 | 0.9216 | 0.9246 |
2 | 4 | 0.9248 | 0.96 | 0.8899 | 0.8963 |
1 | 4 | 0.9046 | 0.9287 | 0.8809 | 0.8849 |
4 | 5 | 0.9264 | 0.8627 | 0.9893 | 0.9876 |
3 | 5 | 0.9514 | 0.9602 | 0.9427 | 0.9429 |
2 | 5 | 0.9357 | 0.9542 | 0.9174 | 0.9191 |
1 | 5 | 0.9317 | 0.9044 | 0.9584 | 0.9551 |
4 | 6 | 0.9635 | 0.976 | 0.9512 | 0.9517 |
3 | 6 | 0.9477 | 0.9669 | 0.9287 | 0.9303 |
2 | 6 | 0.9355 | 0.8966 | 0.9738 | 0.9711 |
1 | 6 | 0.941 | 0.9403 | 0.9417 | 0.9403 |
4 | 7 | 0.9517 | 0.9798 | 0.9252 | 0.9252 |
3 | 7 | 0.9561 | 0.9733 | 0.9397 | 0.9388 |
2 | 7 | 0.9498 | 0.9601 | 0.94 | 0.9382 |
1 | 7 | 0.9548 | 0.9488 | 0.9606 | 0.9583 |
4 | 8 | 0.9664 | 0.9567 | 0.9753 | 0.9725 |
3 | 8 | 0.9691 | 0.9571 | 0.9802 | 0.9781 |
2 | 8 | 0.9591 | 0.9839 | 0.9364 | 0.9339 |
1 | 8 | 0.9278 | 0.9875 | 0.8734 | 0.8768 |
4 | 9 | 0.9619 | 0.9446 | 0.9772 | 0.9735 |
3 | 9 | 0.9548 | 0.9331 | 0.974 | 0.9693 |
2 | 9 | 0.9541 | 0.9353 | 0.9707 | 0.9656 |
1 | 9 | 0.9645 | 0.9747 | 0.9556 | 0.9507 |
4 | 10 | 0.9514 | 0.9584 | 0.9458 | 0.9326 |
3 | 10 | 0.9467 | 0.9795 | 0.9209 | 0.9072 |
2 | 10 | 0.954 | 0.9705 | 0.9411 | 0.9284 |
1 | 10 | 0.9581 | 0.9636 | 0.9538 | 0.9421 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabra Lopez, J.-L.; Parra, C.; Forero, G. A Fast Deep Learning ECG Sex Identifier Based on Wavelet RGB Image Classification. Data 2023, 8, 97. https://doi.org/10.3390/data8060097
Cabra Lopez J-L, Parra C, Forero G. A Fast Deep Learning ECG Sex Identifier Based on Wavelet RGB Image Classification. Data. 2023; 8(6):97. https://doi.org/10.3390/data8060097
Chicago/Turabian StyleCabra Lopez, Jose-Luis, Carlos Parra, and Gonzalo Forero. 2023. "A Fast Deep Learning ECG Sex Identifier Based on Wavelet RGB Image Classification" Data 8, no. 6: 97. https://doi.org/10.3390/data8060097
APA StyleCabra Lopez, J. -L., Parra, C., & Forero, G. (2023). A Fast Deep Learning ECG Sex Identifier Based on Wavelet RGB Image Classification. Data, 8(6), 97. https://doi.org/10.3390/data8060097