Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea)
"> Figure 1
<p>Geological map of Malta.</p> "> Figure 2
<p>View of an extensive coastal boulder deposit (Rdhum landscape) in north Malta.</p> "> Figure 3
<p>(<b>A</b>) Map of the Maltese islands; and (<b>B</b>) location of the study area. The orange polygon in B indicates the study area.</p> "> Figure 4
<p>Geological and landslide map of the study area on the northeastern coast of Malta.</p> "> Figure 5
<p>(<b>A</b>) Drone-derived image of gravity-induced joints along the Marfa Ridge plateau; and (<b>B</b>) drone-derived photo of Rdhum Rxawn, where a large slope-failure deposit occurs downslope between St Paul’s Bay and the UCL plateau.</p> "> Figure 6
<p>The distribution of landslides and Maltese geological formations along the northeastern coast of Malta with respect to the total surface of the study area.</p> "> Figure 7
<p>Variation of joint population according to ISRM persistence standards along different sectors of the study area. No gravity-induced joints were detected on St Paul’s Islands.</p> "> Figure 8
<p>Megaclast size analysis within the study area using GE interpretation.</p> "> Figure 9
<p>Statistics of attribute “Origin”. Over 98% of megaclasts are moved by block slides and rock falls. The latter are frequently collateral landslides of large DGSDs.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Design of the Dataset
3.2. Methods for Data Compilation
3.2.1. Gravity-Induced Joint Data
3.2.2. Megaclast Data
3.2.3. Sinkhole Data
4. Results and Inventory Statistics
4.1. Gravity-Induced Joint Data
4.2. Megaclast Data
4.3. Sinkhole Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DGSD | Deep-seated Gravitational Slope Deformation |
GE | Google Earth |
UCL | Upper Coralline Limestone Formation |
BC | Blue Clays |
GL | Globigerina Limestone Formation |
LCL | Lower Coralline Limestone Formation |
LIM | Landslide Inventory Map |
WOS | Weight Of Evidence |
GNSS | Global Navigation Satellite System |
SAR | Synthetic Aperture Radar |
ISRM | International Society for Rock Mechanics |
HR | High Resolution |
UAV-DP | Unmanned Aerial Vehicle Digital Photogrammetry |
References
- Mateos, R.M.; Ezquerro, P.; Azañón, J.M.; Gelabert, B.; Herrera, G.; Fernández-Merodo, J.A.; Spizzichino, D.; Sarro, R.; Garcia-Moreno, I.; Bejar-Pizarro, M. Coastal lateral spreading in the world heritage site of the Tramuntana Range (Majorca, Spain). The use of PSInSAR monitoring to identify vulnerability. Landslides 2018, 15, 797–809. [Google Scholar] [CrossRef]
- Ilia, I.; Koumantakis, I.; Rozos, D.; Koukis, G.; Tsangaratos, P. A geographical information system (GIS) based probabilistic certainly factor approach in assessing landslide susceptibility: The case study of Kimi, Euboea, Greece. In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Cham, Switzerland, 2015; Volume 2, pp. 1199–1406. [Google Scholar]
- Carobene, L.; Cevasco, A. A large scale lateral spreading, its genesis and Quaternary evolution in the coastal sector between Cogoleto and Varazze (Liguria-Italy). Geomorphology 2011, 129, 398–411. [Google Scholar] [CrossRef]
- Della Seta, M.; Martino, S.; Scarascia Mugnozza, G. Quaternary sea-level change and slope instability in coastal areas: Insights from the Vasto Landslide (Adriatic coast, central Italy). Geomorphology 2013, 201, 462–478. [Google Scholar] [CrossRef] [Green Version]
- Ietto, F.; Perri, F.; Fortunato, G. Lateral spreading phenomena and weathering processes from Tropea area (Calabria, southern Italy). Environ. Earth Sci. 2015, 73, 4595–4608. [Google Scholar] [CrossRef]
- Agnesi, V.; Rotigliano, E.; Tammaro, U.; Cappadonia, C.; Conoscenti, C.; Obrizzo, F.; Di Maggio, C.; Luzio, D.; Pingue, F. GPS monitoring of the Scopello (Sicily, Italy) DGSD phenomenon: Relationships between surficial and deep-seated morphodynamics. In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Cham, Switzerland, 2015; Volume 2, pp. 1321–1325. [Google Scholar]
- Furlani, S.; Devoto, S.; Biolchi, S.; Cucchi, F. Factors triggering sea cliff instability along the slovenian coasts. J. Coast. Res. 2011, 61, 387–393. [Google Scholar] [CrossRef]
- Del Soldato, M.; Confuorto, P.; Bianchini, S.; Sbarra, P.; Casagli, N. Review of works combining GNSS and InSAR in Europe. Remote Sens. 2021, 13, 1684. [Google Scholar] [CrossRef]
- Devoto, S.; Biolchi, S.; Bruschi, V.M.; Furlani, S.; Mantovani, M.; Piacentini, D.; Pasuto, A.; Soldati, M. Geomorphological map of the NW Coast of the Island of Malta (Mediterranean Sea). J. Maps 2012, 8, 33–40. [Google Scholar] [CrossRef]
- Devoto, S.; Biolchi, S.; Bruschi, V.M.; Díez, A.G.; Mantovani, M.; Pasuto, A.; Piacentini, D.; Schembri, J.A.; Soldati, M. Landslides along the North-West Coast of the Island of Malta. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 1, pp. 57–63. [Google Scholar]
- Main, G.; Schembri, J.; Gauci, R.; Crawford, K.; Chester, D.; Duncan, G. The hazard exposure of the Maltese Islands. Nat. Hazards 2018, 92, 829–855. [Google Scholar] [CrossRef]
- Soldati, M.; Devoto, S.; Prampolini, M.; Pasuto, A. The spectacular landslide-controlled Landscape of the Northwestern Coast of Malta. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 167–178. [Google Scholar]
- Prampolini, M.; Gauci, R.; Micallef, A.S.; Selmi, L.; Vandelli, V.; Soldati, M. Geomorphology of the north-eastern coast of Gozo (Malta, Mediterranean Sea). J. Maps 2018, 14, 402–410. [Google Scholar] [CrossRef]
- Furlani, S.; Gauci, R.; Devoto, S.; Schembri, J.A. Filfla: A case study of the effect of target practice on coastal landforms. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 261–271. [Google Scholar]
- Pasuto, A.; Soldati, M. Rock spreading. In Landslide Recognition: Identification, Movement and Courses; Dikau, R., Brunsden, D., Schrott, L., Ibsen, M.-L., Eds.; Wiley: Chichester, UK, 1996; pp. 122–136. [Google Scholar]
- Ibsen, M.-L.; Brunsden, D.; Bromhead, E.; Collison, A. Block slide. In Landslide Recognition: Identification, Movement and Courses; Dikau, R., Brunsden, D., Schrott, L., Ibsen, M.-L., Eds.; Wiley: Chichester, UK, 1996; pp. 64–77. [Google Scholar]
- Agliardi, F.; Crosta, G.; Zanchi, A. Structural constraints on deep-seated slope deformation kinematics. Eng. Geol. 2001, 59, 83–102. [Google Scholar] [CrossRef]
- Pánek, T.; Klimeš, J. Temporal behavior of deep-seated gravitational slope deformations: A review. Earth-Sci. Rev. 2016, 156, 14–38. [Google Scholar] [CrossRef]
- Mariani, G.S.; Zerboni, A. Surface geomorphological features of deep-seated gravitational slope deformations: A look to the role of lithostructure (N Apennines, Italy). Geosci. J. 2020, 10, 334. [Google Scholar] [CrossRef]
- Devoto, S. Cartografia, Monitoraggio e Modellizzazione di Frane Lungo la Costa Nord-Occidentale dell’isola di Malta. Ph.D. Thesis, University of Modena and Reggio Emilia, Modena, Italy, 3 April 2013. [Google Scholar]
- Mantovani, M.; Devoto, S.; Forte, E.; Mocnik, A.; Pasuto, A.; Piacentini, D.; Soldati, M. A multidisciplinary approach for rock spreading and block sliding investigation in the north-western coast of Malta. Landslides 2013, 10, 611–622. [Google Scholar] [CrossRef]
- Devoto, S.; Macovaz, V.; Mantovani, M.; Soldati, M.; Furlani, S. Advantages of using UAV digital photogrammetry in the study of slow-moving coastal landslides. Remote Sens. 2020, 12, 3566. [Google Scholar] [CrossRef]
- Scerri, S. Sedimentary evolution and resultant geological landscapes. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 31–47. [Google Scholar]
- Baldassini, N.; Di Stefano, A. Stratigraphic features of the Maltese Archipelago: A synthesis. Nat. Hazards 2017, 86, 203–231. [Google Scholar] [CrossRef]
- Soldati, M.; Barrows, T.T.; Prampolini, M.; Fifield, K.L. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea). J. Coast. Conserv. 2018, 22, 831–844. [Google Scholar] [CrossRef] [Green Version]
- Furlani, S.; Antonioli, F.; Biolchi, S.; Gambin, T.; Gauci, R.; Lo Presti, V.; Anzidei, M.; Devoto, S.; Palombo, M.; Sulli, A. Holocene sea level change in Malta. Quat. Int. 2013, 288, 146–157. [Google Scholar] [CrossRef]
- Coratza, P.; Bruschi, V.M.; Piacentini, D.; Saliba, D.; Soldati, M. Recognition and assessment of geomorphosites in Malta at the Il-Majjistral nature and history park. Geoheritage 2011, 3, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Cappadonia, C.; Coratza, P.; Agnesi, V.; Soldati, M. Malta and Sicily joined by geoheritage enhancement and geotourism within the framework of land management and development. Geosci. J. 2018, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Piacentini, D.; Devoto, S.; Mantovani, M.; Pasuto, A.; Prampolini, M.; Soldati, M. Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): An example from the northwestern coast of Malta. Nat. Hazards 2015, 78, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, M.; Devoto, S.; Piacentini, D.; Prampolini, M.; Soldati, M.; Pasuto, A. Advanced SAR interferometric analysis to support geomorphological interpretation of slow-moving coastal landslides (Malta, Mediterranean Sea). Remote Sens. 2016, 8, 443. [Google Scholar] [CrossRef] [Green Version]
- Prampolini, M.; Foglini, F.; Biolchi, S.; Devoto, S.; Angelini, S.; Soldati, M. Geomorphological mapping of terrestrial and marine areas, northern Malta and Comino (central Mediterranean Sea). J. Maps 2017, 13, 457–469. [Google Scholar] [CrossRef]
- Panzera, F.; D’Amico, S.; Lotteri, A.; Galea, P.; Lombardo, G. Seismic site response of unstable steep slope using noise measurements: The case study of Xemxija Bay area, Malta. Nat. Hazards Earth Syst. Sci. 2012, 12, 3421–3431. [Google Scholar] [CrossRef] [Green Version]
- Phinn, S.R.; Menges, C.; Hill, G.J.E.; Stanford, M. Optimizing remotely sensed solutions for monitoring, modeling, and managing coastal environments. Remote Sens. Environ. 2000, 73, 117–132. [Google Scholar] [CrossRef]
- Teeuw, R.M. Applications of remote sensing for geohazard mapping in coastal and riverine environments. In Mapping Hazardous Terrain Using Remote Sensing; Teeuw, R.M., Ed.; Geological Society: London, UK, 2007; Special Publications; Volume 283, pp. 93–106. [Google Scholar]
- Troiani, F.; Martino, S.; Marmoni, G.M.; Menichetti, M.; Torre, D.; Iacobucci, G.; Piacentini, D. Integrated field surveying and land surface quantitative analysis to assess landslide proneness in the conero promontory rocky coast (Italy). Appl. Sci. 2020, 10, 4793. [Google Scholar] [CrossRef]
- Galea, P. Central Mediterranean tectonics—A key player in the geomorphology of the Maltese Islands. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 19–30. [Google Scholar]
- Gauci, R.; Inkpen, R. The physical characteristics of limestone shore platforms on the Maltese Islands and their neglected contribution to coastal land use development. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 343–356. [Google Scholar]
- Sammut, S.; Gauci, R.; Inkpen, R.; Lewis, J.J.; Gibson, A. Selmun: A coastal limestone landscape enriched by scenic landforms, conservation status and religious significance. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 325–341. [Google Scholar]
- Selmi, L.; Coratza, P.; Gauci, R.; Soldati, M. Geoheritage as a tool for environmental management: A case study in Northern Malta (Central Mediterranean Sea). Resources 2019, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, F.; Guerrero, J.; Lucha, P. A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environ. Geol. 2008, 53, 993–1006. [Google Scholar] [CrossRef]
- ISRM. International society for rock mechanics commission on standardization of laboratory and filed tests: Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Min. Sci. Geomech. Abstr. 1978, 15, 319–378. [Google Scholar] [CrossRef]
- Bruno, D.E.; Ruban, D.A. Something more than boulders: A geological comment on the nomenclature of megaclasts on extraterrestrial bodies. Planet. Space Sci. 2017, 135, 37–42. [Google Scholar] [CrossRef]
- Ruban, D.A. Finding coastal megaclast deposits: A virtual perspective. J. Mar. Sci. Eng. 2020, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. Spec. Rep. Natl. Acad. Sci. Transp. Res. Board 1996, 247, 36–75. [Google Scholar]
- Walstra, J.; Chandler, J.; Dixon, N.; Dijkstra, T.A. Aerial photography and digital photogrammetry for landsliding monitoring. In Mapping Hazardous Terrain Using Remote Sensing; Teeuw, R.M., Ed.; Geological Society: London, UK, 2007; Special Publications; Volume 283, pp. 53–63. [Google Scholar]
- Young, A.P.; Carilli, J.E. Global distribution of coastal cliffs. Earth Surf. Process. Landf. 2019, 44, 1309–1316. [Google Scholar] [CrossRef] [Green Version]
Shapefile Name | Dataset | Data Structure | Explanation |
---|---|---|---|
Joint_NE | Gravity-induced joints | Line | Location and persistence characterization of induced-gravity joints |
Size_megaclasts_NE | Blocks and megablocks | Point | Location and size categorization of boulders with axis not exceeding 100 m. |
Superblock_NE | Superblocks | Polygon | Location and size categorization of boulders with major axis exceeding 100 m |
Sinkhole_NE | Sinkholes | Polygon | Location and type categorization according to [40] |
Attribute Name | Data Type | Explanation | Unit | Comment |
---|---|---|---|---|
Length | Number | Length of joint | m | Number of decimal places = 0 |
Pers class | Text | Length category | ISRM 1 category | Number of classes = 5 |
Attribute Name | Data Type | Explanation | Comment |
---|---|---|---|
Type | Text | Size category | Number of classes = 2 |
Origin | Text | Landslide/sinkhole type | Number of classes = 5 |
Attribute Name | Data Type | Explanation | Comment |
---|---|---|---|
Type | Text | Size category | Number of classes = 1 |
Length | Number | Length of main axis | Number of decimal places = 0 |
Origin | Text | Landslide type | Number of classes = 1 |
Attribute Name | Data Type | Explanation | Comment |
---|---|---|---|
Type | Text | Sinkhole category | Number of classes = 2 |
S_Shape | Text | Shape of sinkhole | Number of classes = 2 |
Position | Text | Sinkhole location | Number of classes = 2 |
Text Names | ISRM Category | Joint Length [m] |
---|---|---|
very low | Very low persistence | <1 |
low | Low persistence | 1–3 |
medium | Medium persistence | 3–10 |
high | High persistence | 10–20 |
very high | Very high persistence | >20 |
Text Names | “Size_megaclast_NE” Shapefile | “Superblock_NE” Shapefile |
---|---|---|
Block | X | - |
Megablock | X | - |
Superblock | - | X |
Text Name | Landslide Type | Sinkhole Type |
---|---|---|
Block slid | Block slide | - |
Rockfall | Rock fall | - |
Topple | Rock topple | - |
B C Sink | - | Bedrock collapse sinkhole |
Undetermined | - | Sinkhole not categorized |
Text Name | Attribute Name | Key/Comment |
---|---|---|
B C Sink | Type | Bedrock collapse sinkhole |
Ind_Sink | Type | The sinkhole was not categorized |
Circular | S_Shape | Sinkhole has a form of a circle |
Oval | S_Shape | Sinkhole has an elongated outline |
Inland | Position | Sinkhole is located inland |
Sea | Position | The sinkhole floor is located offshore |
Total | Very Low (<1 m) | Low (1–3 m) | Medium (3–10 m) | High (10–20 m) | Very High (>20 m) | |
---|---|---|---|---|---|---|
Gravity-induced joint | 124 | 4 | 18 | 46 | 30 | 26 |
Total | Block | Megablock | Superblock | |
---|---|---|---|---|
Megaclast | 39,861 | 39,573 | 287 | 1 |
Sinkhole [#] | Location | Type | Shape | Area [m2] |
---|---|---|---|---|
id-Dragonara Sinkhole | L-Ahrax | Bedrock Collapse Sinkhole | Oval | 331 |
2 | L-Ahrax | Bedrock Collapse Sinkhole | Oval | 2850 |
Ta′ I-Imgharqa Sinkhole | Mellieha Bay | Bedrock Collapse Sinkhole | Circular | 5057 |
4 | Mellieha Bay | Undetermined | Oval | 11,501 |
5 | Rdhum Rxawn | Bedrock Collapse Sinkhole | Oval | 1733 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devoto, S.; Hastewell, L.J.; Prampolini, M.; Furlani, S. Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea). Data 2021, 6, 81. https://doi.org/10.3390/data6080081
Devoto S, Hastewell LJ, Prampolini M, Furlani S. Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea). Data. 2021; 6(8):81. https://doi.org/10.3390/data6080081
Chicago/Turabian StyleDevoto, Stefano, Linley J. Hastewell, Mariacristina Prampolini, and Stefano Furlani. 2021. "Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea)" Data 6, no. 8: 81. https://doi.org/10.3390/data6080081
APA StyleDevoto, S., Hastewell, L. J., Prampolini, M., & Furlani, S. (2021). Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea). Data, 6(8), 81. https://doi.org/10.3390/data6080081