A Data Descriptor for Black Tea Fermentation Dataset
<p>Block diagram of the data collection system.</p> "> Figure 2
<p>Collection of the dataset in Sisibo tea factory, Kenya using Raspberry pi and Pi camera.</p> "> Figure 3
<p>File structure of the black tea fermentation dataset.</p> "> Figure 4
<p>A Screenshot of the fermentation condition CSV file.</p> "> Figure 5
<p>A sample of classes of tea image fermentation dataset released in this paper.</p> "> Figure 6
<p>Fermentation conditions of tea in Sisibo tea factory on 10 August 2020.</p> "> Figure 7
<p>Fermentation conditions of tea in Sisibo tea factory on 11 August 2020.</p> "> Figure 8
<p>Fermentation conditions of tea in Sisibo tea factory on 12 August 2020.</p> "> Figure 9
<p>Fermentation conditions of tea in Sisibo tea factory on 13 August 2020.</p> "> Figure 10
<p>Temperature and humidity during black tea fermentation in Sisibo tea factory between 10 and 13 August 2020.</p> ">
Abstract
:1. Background and Rationale
2. Materials and Methods
2.1. Resources
2.2. Collection of the Dataset
3. Data Description
4. Data Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
AWS | Amazon Web Services |
E-Commerce | Electronic Commerce |
References
- Miura, K.; Hughes, M.C.B.; Arovah, N.I.; Van Der Pols, J.C.; Green, A.C. Black Tea Consumption and Risk of Skin Cancer: An 11-Year Prospective Study. Nutr. Cancer 2015, 67, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Saikia, D.; Boruah, P.K.; Sarma, U. A Sensor Network to Monitor Process Parameters of Fermentation and Drying in Black Tea Production. Mapan 2015, 30, 211–219. [Google Scholar] [CrossRef]
- Bhattacharyya, N.; Seth, S.; Tudu, B.; Tamuly, P.; Jana, A.; Ghosh, D.; Bandyopadhyay, R.; Bhuyan, M.; Sabhapandit, S. Detection of optimum fermentation time for black tea manufacturing using electronic nose. Sens. Actuators B Chem. 2007, 122, 627–634. [Google Scholar] [CrossRef]
- Kimutai, G.; Ngenzi, A.; Said, R.N.; Kiprop, A.; Förster, A. An Optimum Tea Fermentation Detection Model Based on Deep Convolutional Neural Networks. Data 2020, 5, 44. [Google Scholar] [CrossRef]
- Onduru, D.D.; De Jager, A.; Hiller, S.; Van Den Bosch, R. Sustainability of Smallholder Tea Production in Developing Countries: Learning Experiences from Farmer Field Schools in Kenya. Int. J. Dev. Sustain. 2012, 1, 714–742. [Google Scholar]
- Tea Board of Kenya. Kenya Tea Yearly Report; Technical Report; Tea Board of Kenya: Nairobi, Kenya, 2018.
- Kagira, E.K.; Kimani, S.W.; Githii, K.S. Sustainable Methods of Addressing Challenges Facing Small Holder Tea Sector in Kenya: A Supply Chain Management Approach. J. Manag. Sustain. 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Kamunya, S.M.; Wachira, F.N.; Pathak, R.S.; Muoki, R.C.; Sharma, R.K. Tea Improvement in Kenya. In Advanced Topics in Science and Technology in China; Springer: Berlin/Heidelberg, Germany, 2012; pp. 177–226. [Google Scholar] [CrossRef]
- Ghosh, S.; Tudu, B.; Bhattacharyya, N.; Bandyopadhyay, R. A recurrent Elman network in conjunction with an electronic nose for fast prediction of optimum fermentation time of black tea. Neural Comput. Appl. 2019, 31, 1165–1171. [Google Scholar] [CrossRef]
- Deb, S.; Jolvis Pou, K.R. A Review of Withering in the Processing of Black Tea. J. Biosyst. Eng. 2016, 41, 12. [Google Scholar] [CrossRef] [Green Version]
- Binh, P.T.; Du, D.H.; Nhung, T.C. Control and Optimize Black Tea Fermentation Using Computer Vision and Optimal Control Algorithm. In Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2020; Volume 104, pp. 310–319. [Google Scholar] [CrossRef]
- Ghosh, A.; Sharma, P.; Tudu, B.; Sabhapondit, S.; Baruah, B.D.; Tamuly, P.; Bhattacharyya, N.; Bandyopadhyay, R. Detection of Optimum Fermentation Time of Black CTC Tea Using a Voltammetric Electronic Tongue. IEEE Trans. Instrum. Meas. 2015, 64, 2720–2729. [Google Scholar] [CrossRef]
- Debashis, S.; Boruah, P.K.R.; Sarma, U. Development and implementation of a sensor network to monitor fermentation process parameter in tea processing. Int. J. Smart Sens. Intell. Syst. 2014, 7, 1254–1270. [Google Scholar]
- Jolvis Pou, K. Fermentation: The Key Step in the Processing of Black Tea. J. Biosyst. Eng. 2016, 41, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Manigandan, N. Handheld Electronic Nose (HEN) for detection of optimum fermentation time during tea manufacture and assessment of tea quality. Int. J. Adv. Res. 2019, 7, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep Learning to Improve Breast Cancer Detection on Screening Mammography. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Kimutai, G.; Cheruiyot, P.W.; Otieno, D.C. A Content Based Image Retrieval Model for E-Commerce. Int. J. Eng. Comput. Sci. 2018, 7, 24392–24396. [Google Scholar] [CrossRef]
- Chityala, R.; Pudipeddi, S. Image Processing and Acquisition using Python, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014; p. 390. [Google Scholar]
- Kimutai, G.; Anna, F. Black Tea Fermentation Dataset; Technical Report; Mendeley Ltd.: London, UK, 2020. [Google Scholar] [CrossRef]
- Marot, J.; Bourennane, S. Raspberry Pi for image processing education. In Proceedings of the 25th European Signal Processing Conference, EUSIPCO 2017, Kos, Greece, 28 August–2 September 2017; Volume 2017, pp. 2364–2368. [Google Scholar] [CrossRef] [Green Version]
- Thangavel, S.K.; Murthi, M. A semi automated system for smart harvesting of tea leaves. In Proceedings of the 2017 4th International Conference on Advanced Computing and Communication Systems, ICACCS 2017, Coimbatore, India, 6–7 January 2017. [Google Scholar] [CrossRef]
- Narula, S.; Jain, A.; Prachi. Cloud computing security: Amazon web service. In Proceedings of the International Conference on Advanced Computing and Communication Technologies, ACCT, Haryana, India, 21–22 February 2015; Volume 2015, pp. 501–505. [Google Scholar] [CrossRef]
- Dubosson, F.; Bromuri, S.; Schumacher, M. A python framework for exhaustive machine learning algorithms and features evaluations. In Proceedings of the International Conference on Advanced Information Networking and Applications, AINA, Crans-Montana, Switzerland, 23–25 March 2016; Volume 2016, pp. 987–993. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimutai, G.; Ngenzi, A.; Ngoga Said, R.; Ramkat, R.C.; Förster, A. A Data Descriptor for Black Tea Fermentation Dataset. Data 2021, 6, 34. https://doi.org/10.3390/data6030034
Kimutai G, Ngenzi A, Ngoga Said R, Ramkat RC, Förster A. A Data Descriptor for Black Tea Fermentation Dataset. Data. 2021; 6(3):34. https://doi.org/10.3390/data6030034
Chicago/Turabian StyleKimutai, Gibson, Alexander Ngenzi, Rutabayiro Ngoga Said, Rose C. Ramkat, and Anna Förster. 2021. "A Data Descriptor for Black Tea Fermentation Dataset" Data 6, no. 3: 34. https://doi.org/10.3390/data6030034