An Eddy Covariance Mesonet For Measuring Greenhouse Gas Fluxes in Coastal South Carolina
<p>Data collection and processing workflow for the coastal flux mesonet at Hobcaw Barony.</p> "> Figure 2
<p>Map of South Carolina showing the mesonet’s study region in reference to major cities. The inset is a satellite image marked with each tower’s coordinates, the boundary of the land grant (Hobcaw Barony), nearest town (Georgetown, SC), and local waterways (Landsat-7 image courtesy of the U.S. Geological Survey).</p> "> Figure 3
<p>Precipitation and air temperature variables at the Hobcaw Barony sites for the period of January 2019 through December 2019. The bars are total precipitation for each month measured for US-HB1 (via the North Inlet-Winyah Bay National Estuarine Research Reserve (NI-WB NERR)). The line illustrates the mean monthly air temperature measured at US-HB2 (TA_1_1_1). Note the high precipitation values for September, when Hurricane Dorian made landfall in South Carolina.</p> "> Figure 4
<p>Top row left to right: US-HB1, US-HB2, US-HB3 tower locations. Bottom row left to right: approximate 90th percentile of the flux footprint for each tower overlayed on top of aerial photographs accessed through the Aerial Photography Field Office (APFO) National Agriculture Imagery Program’s (NAIP) Public Server <a href="https://gis.apfo.usda.gov/arcgis/rest/services/" target="_blank">(https://gis.apfo.usda.gov/arcgis/rest/services)</a>. Target footprints have a radius of 90, 220 and 100 m for US-HB1, US-HB2, and US-HB3, respectively.</p> "> Figure 5
<p>Schematic of eddy covariance tower US-HB2, indicating the location of instrumentation.</p> "> Figure 6
<p>The diurnal patterns of fluxes of carbon dioxide, sensible heat, and latent heat averaged over the entire year of 2019. The mature southern pine forest (US-HB2) exhibits the strongest daytime carbon uptake of the three sites. The salt marsh (US-HB1) has the highest latent heat flux (evapotranspiration) due to saturated soils, which, combined with lateral tidal heat exchange, reduces the sensible heat flux.</p> "> Figure 7
<p>The carbon dioxide, sensible heat, and latent heat turbulent fluxes for all three tower locations spanning the year 2019. While US-HB1 and US-HB3 (salt marsh and recent pine clearcut harvest, respectively) show some seasonality with larger fluxes of carbon dioxide and heat in the summer months, US-HB2 (mature pine forest) does not. This lack of seasonality is particularly evident with carbon dioxide, where the mature pine ecosystem’s photosynthesis does not drastically decline in the winter as a deciduous forest ecosystem would be expected to. Note: US-HB1 has a data gap from September 1st 15:00 EST through December 5th 10:00 EST due to damage from Hurricane Dorian.</p> ">
Abstract
:1. Summary
2. Data Description
Metadata
3. Methods
3.1. Site Description
Tower Locations and Infrastructure
3.2. Sensors
3.3. Raw Measurements
3.4. Data Storage
3.5. Data Quality Assurance/Quality Control (QA/QC)
3.6. Data Processing and Derived Variables
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BADM | Biological, Ancillary, Disturbance and Metadata Protocol |
BERS | Office of Biological and Environmental Research |
DOE | Department of Energy |
MDPI | Multidisciplinary Digital Publishing Institute |
NAVD88 | North American Vertical Datum of 1988 |
NDVI | Normalized Difference Vegetation Index |
NI-WB NERR | North Inlet-Winyah Bay National Estuarine Research Reserve |
NOAA | National Oceanic and Atmospheric Administration |
NRCS | Natural Resources Conservation Service |
PAR | Photosynthetically Active Radiation |
PRI | Photochemical Reflectance Index |
PSU | Practical Salinity Unit |
QAQC | Quality Assurance/Quality Control |
SOM | Soil Organic Matter |
SRS | Spectral Reflectance Sensors |
SWMP | System-Wide Monitoring Program |
TES | Terrestrial Ecosystem Science |
USDA | United States Department of Agriculture |
WSS | Web Soil Survey |
Appendix A. Additional Tables
Sensor/Equipment | Measured Variables (Units) | Derived Variables (Units) | US-HB1 | US-HB2 | US-HB3 | |
---|---|---|---|---|---|---|
Height (m) | Height (m) | Height (m) | ||||
Pre-Dorian | Post-Dorian | |||||
Irgason CO/HO | CO Density (mg·m); | CO Flux (molCO m s); | 3.91 | 3.9 | 29.9 | 4.1 |
Open Path Gas Analyzer | HO Density (g·m); | H Flux (W m); | ||||
with Sonic | Orthogonal Wind Components: Ux, Uy, Uz (m/s); | LE Flux (W m) | ||||
Sonic Air Temperature (C); | ||||||
Air Temperature (C); | ||||||
Barometric Pressure (kPa) | ||||||
CNR4 Net Radiometer | Short-wave Solar Radiation (W/m); | Albedo (%); | 4.19 | 4.13 | 32.9 | 4.4 |
Long-wave far infared radiation (W/m); | Net Radiation (W/m) | |||||
Air Temperature (Kelvin) | ||||||
HMP155A: Temperature | Relative Humidity (%); | Dew Point (C) | 1.98, 4.83 | 1.70, 4.89 | 2.0, 18.3, 22.9, 32.9 | 1.9, 5.5 |
and RH Probe | Air Temperature (C) | |||||
Spectral Reflectance | Calibrated Spectral Irradiance, reflected (W m nm sr); | Normalized difference | 4.19 | 4.13 | 32.9 | 4.4 |
Sensors: Nr NDVI | Calibrated Spectral Irradiance, incident (W m nm); | vegetation index (NDVI) | ||||
Field Stops and Ni | (W m nm) | |||||
NDVI Hemispherical | ||||||
Spectral Reflectance | Calibrated Spectral Irradiance, reflected (W m nm sr); | Photochemical Reflectance | - | - | 32.9 | 4.4 |
Sensors: Pr PRI | Calibrated Spectral Irradiance, incident (W m nm); | Index (PRI) | ||||
Field Stops and | (W m nm) | |||||
Pi PRI Hemispherical | ||||||
109SS: Temperature Probe | Soil Temperature (C) | −0.1, −0.2 | −0.1, −0.2 | - | - | |
HFP01 Heat Flux Plate | Heat Flux (W m) | - | - | −0.15 | −0.15 | |
PTB110 Barometer | Barometric Pressure (mb) | Barometric Pressure (kPa) | - | - | - | 1.5 |
TE525 Tipping Bucket | 0.1 mm of Rainfall per Tip | Rainfall (mm) | - | - | 29.9 | 6 |
Rain Gage | ||||||
SQ-500 Full Spectrum | Photosynthetic Photon Flux | - | - | 32.9 | 4.4 | |
Quantum Sensor | Density (molPhoton m s) | |||||
CS655: Soil Water | Soil Volumetric Water Content (%); | - | - | −0.15, −0.18, −0.29, −0.44 | −0.15, −0.15, −0.4 | |
Content Reflectometer | Bulk Electrical Conductivity (dS m); | |||||
Soil Temperature (C) | ||||||
LWS Dielectric Leaf | Dielectric Constant of Zone (mV) | Leaf Surface Wetness | - | - | 2.0, 18.3, 22.9 | 0.6, 2.2 |
Wetness Sensor | ||||||
SPN1 Sunshine Pyrameter | Total Solar Radiation (mV); | Direct Solar Radiation (W/m); | - | - | 32.9 | - |
Diffuse Solar Radiation (mv); | Diffuse Solar Radiation (W/m); | |||||
Sunshine Status (min, sec) | Sunshine Duration |
Eddypro® 7.0.6 Option | Setting |
---|---|
Processing Options | |
W-boost Bug Correction for WindMaster/Pro | Off |
File Output Options | |
Build continuous data set | On (Note: Not gap-filling; missing flux averaging filled with error codes) |
Ameriflux Variable | Description | Units | US-HB1 | US-HB2 | US-HB3 | |||
---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | |||
RH | Relative Humidity | % | 0 | 100 | 0 | 100 | 0 | 100 |
TA | Air temperature | C | −19 | 45 | −20 | 50 | −20 | 50 |
P_RAIN | Rainfall | mm | 0 | 4 | 0 | 4 | 0 | 4 |
ALB | Albedo | % | 0 | 100 | 0 | 100 | 0 | 100 |
LW_IN | Incoming Longwave Radiation | W m | 180 | 600 | 180 | 600 | 180 | 600 |
LW_OUT | Outgoing Longwave Radiation | W m | 180 | 600 | 180 | 600 | 180 | 600 |
NDVI | Normalized Difference Vegetation Index | - | −1 | 1 | 0 | 1 | 0 | 1 |
SW_IN | Incoming Shortwave Radiation | W m | −10 | 1300 | −10 | 2000 | −10 | 2000 |
SW_OUT | Outgoing Shortwave Radiation | W m | −10 | 1300 | −10 | 2000 | −10 | 2000 |
TS | Soil Temperature | C | 0 | 45 | −10 | 50 | −10 | 50 |
FC | CO Turbulent Flux | molCO m s | −60 | 60 | −60 | 60 | −60 | 60 |
LE | Latent Heat Turbulent Flux | W m | −200 | 1000 | −200 | 1000 | −200 | 1000 |
H | Sensible Heat Turbulent Flux | W m | −200 | 1000 | −200 | 1000 | −200 | 1000 |
LEAF_WET | Leaf Wetness, Dielectric Constant | mV | - | - | 250 | 800 | 250 | 700 |
G | Soil Heat Flux | W m | - | - | −200 | 500 | −200 | 500 |
NETRAD | Net radiation | W m | - | - | −500 | 2000 | −500 | 2000 |
PPFD_IN | Incoming Photosynthetic Flux Density | molPhoton m s | - | - | −10 | 2500 | −10 | 2500 |
PPFD_OUT | Outgoing Photosynthetic Flux Density | molPhoton m s | - | - | −10 | 2500 | −10 | 2500 |
PRI | Photochemical Reflectance Index | - | - | - | -1 | 1 | 0 | 1 |
SW_DIF | Incoming Diffuse Shortwave Radiation | W m | - | - | 0 | 2200 | - | - |
SWC | Soil Water Content | % | - | - | 0 | 50 | 0 | 50 |
References
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; et al. Global carbon budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef] [Green Version]
- Bruhwiler, L.; Birdsey, A.M.M.R.; Fisher, J.B.; Houghton, R.A.; Huntzinger, D.N.; Miller, J.B. Synthesis. In Second State of the Carbon Cycle Report (SOCCR2); U.S. Global Change Research Program (USGCRP): Washington, DC, USA, 2018; Chapter 1–2; pp. 42–108. [Google Scholar] [CrossRef]
- Terziyski, A.; Tenev, S.; Jeliazkov, V.; Jeliazkova, N.; Kochev, N. METER.AC: Live open access atmospheric monitoring data for bulgaria with high spatiotemporal resolution. Data 2020, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Daley, R. Preface to Atmospheric Data Analysis. In Atmospheric Data Analysis, Reprint ed.; Cambridge University Press: New York, NY, USA, 1996; Chapter 1. [Google Scholar]
- Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Overpeck, J.; Meehl, G.; Bony, S.; Easterling, D. Climate Data Challenges in the 21st Century. Science 2011, 331, 700–702. [Google Scholar] [CrossRef]
- Windham-Myers, L.; Cai, W.J.; Alin, S.; Andersson, A.; Crosswell, J.; Dunton, K.H.; Hernandez-Ayon, J.M.; Herrmann, M.; Hinson, A.L.; Hopkinson, C.S.; et al. Tidal Wetlands and Estuaries. In Second State of the Carbon Cycle Report (SOCCR2); U.S. Global Change Research Program (USGCRP): Washington, DC, USA, 2018; Chapter 15; pp. 596–648. [Google Scholar] [CrossRef]
- Twigg, E. Coastal Blue Carbon Approaches for Carbon Dioxide Removal and Reliable Sequestration: Proceedings of a Workshop in Brief. In National Academies of Sciences, Engineering, and Medicine 2017; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Holmquist, J.R.; Windham-Myers, L.; Bernal, B.; Byrd, K.B.; Crooks, S.; Gonneea, M.E.; Herold, N.; Knox, S.H.; Kroeger, K.D.; McCombs, J.; et al. Uncertainty in United States coastal wetland greenhouse gas inventorying. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Lu, X.; Kicklighter, D.W.; Melillo, J.M.; Reilly, J.M.; Xu, L. Land carbon sequestration within the conterminous United States: Regional- and state-level analyses. J. Geophys. Res. Biogeosci. 2015, 120, 379–398. [Google Scholar] [CrossRef]
- Johnsen, K.H.; Wear, D.; Oren, R.; Teskey, R.O.; Sanchez, F.; Will, R.; Butnor, J.; Markewitz, D.; Richter, D.; Rials, T.; et al. Carbon Sequestration and Southern Pine Forests Land Use: A Major Determinant. J. For. 2001, 99, 14–21. [Google Scholar]
- Oswalt, S.N.; Smith, W.B.; Miles, P.D.; Pugh, S.A. Forest Resources of the United States, 2017; Technical Report WO-97; USDA Forest Service: Washington, DC, USA, 2019. [CrossRef] [Green Version]
- Sedjo, R.; Sohngen, B. Carbon Sequestration in Forests and Soils. Annu. Rev. Resour. Econ. 2012, 4, 127–144. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Michalak, A.M.; Schwalm, C.; Ciais, P.; King, A.W.; Fang, Y.; Schaefer, K.; Wei, Y.; Cook, R.B.; Fisher, J.B.; et al. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Frost, C.C. Four centuries of changing landscape patterns in the longleaf pine ecosystem. In Proceedings of the Tall Timbers Fire Ecology Conference No. 18, The Longleaf Pine Ecosystem: Ecology, Restoration and Management; Tallahassee, FL, USA, 30 May–2 June 1993, Hermann, S.M., Ed.; Tall Timbers Research Station: Tallahassee, FL, USA, 1993; Volume 18, pp. 17–43. [Google Scholar]
- Jose, S.; Jokela, E.J.; Miller, D.L. The Longleaf Pine Ecosystem. In The Longleaf Pine Ecosystem: Ecology, Silviculture, and Resoration, 1st ed.; Springer: New York, NY, USA, 2007; Chapter 1; pp. 3–8. [Google Scholar]
- Van Lear, D.H.; Carroll, W.D.; Kapeluck, P.R.; Johnson, R. History and restoration of the longleaf pine-grassland ecosystem: Implications for species at risk. For. Ecol. Manag. 2005, 211, 150–165. [Google Scholar] [CrossRef]
- Darden, T.; Case, D.; Hayes, L.; Gjerstad, D.; Sutter, R.; Bohn, C.; Demarest, D. Range-Wide Conservation Plan for Longleaf Pine; Technical report, America’s Longleaf - A Restoration Initiative for the Southern Longleaf Pine Forest. 2009. Available online: http://americaslongleaf.org/media/fqipycuc/conservation$_$plan.pdf (accessed on 3 September 2020).
- Mcintyre, R.K.; Guldin, J.M.; Ettel, T.; Ware, C.; Jones, K. Restoration of longleaf pine in the southern United States: A status report. In Proceedings of the 19th biennial southern silvicultural research conference, Blacksburg, VA, USA, 14–16 March 2017; e-Gen. Tech. Rep. SRS-234. U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2018; pp. 297–302. [Google Scholar]
- Brantley, S.T.; Vose, J.M.; Wear, D.N.; Band, L. Planning for an uncertain future: Restoration to mitigate water scarcity and sustain carbon sequestration. In Ecological Restoration and Management of Longleaf Pine Forests; CRC Press: Boca Raton, FL, USA, 2017; Chapter 15; pp. 291–310. [Google Scholar]
- Sun, G.; Noormets, A.; Gavazzi, M.J.; McNulty, S.G.; Chen, J.; Domec, J.C.; King, J.S.; Amatya, D.M.; Skaggs, R.W. Energy and water balance of two contrasting loblolly pine plantations on the lower coastal plain of North Carolina, USA. For. Ecol. Manag. 2010, 259, 1299–1310. [Google Scholar] [CrossRef]
- Noormets, A.; Gavazzi, M.J.; McNulty, S.G.; Domec, J.C.; Sun, G.; King, J.S.; Chen, J. Response of carbon fluxes to drought in a coastal plain loblolly pine forest. Glob. Chang. Biol. 2010, 16, 272–287. [Google Scholar] [CrossRef]
- Clark, K.L.; Gholz, H.L.; Castro, M.S. Carbon dynamics along a chronosequence of slash pine plantations in North Florida. Ecol. Appl. 2004, 14, 1154–1171. [Google Scholar] [CrossRef]
- Powell, T.L.; Gholz, H.L.; Clark, K.L.; Starr, G.; Cropper, W.P.; Martin, T.A. Carbon exchange of a mature, naturally regenerated pine forest in north Florida. Glob. Chang. Biol. 2008, 14, 2523–2538. [Google Scholar] [CrossRef]
- Kathilankal, J.C.; Mozdzer, T.J.; Fuentes, J.D.; D’Odorico, P.; McGlathery, K.J.; Zieman, J.C. Tidal influences on carbon assimilation by a salt marsh. Environ. Res. Lett. 2008, 3. [Google Scholar] [CrossRef]
- Krauss, K.W.; Holm, G.O.; Perez, B.C.; McWhorter, D.E.; Cormier, N.; Moss, R.F.; Johnson, D.J.; Neubauer, S.C.; Raynie, R.C. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance. J. Geophys. Res. Biogeosci. 2016, 121, 1503–1521. [Google Scholar] [CrossRef] [Green Version]
- Barr, J.G.; Engel, V.; Fuentes, J.D.; Zieman, J.C.; O’Halloran, T.L.; Smith, T.J.; Anderson, G.H. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. J. Geophys. Res. Biogeosci. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Campioli, M.; Malhi, Y.; Vicca, S.; Luyssaert, S.; Papale, D.; Peñuelas, J.; Reichstein, M.; Migliavacca, M.; Arain, M.A.; Janssens, I.A. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nat. Commun. 2016, 7, 1–12. [Google Scholar] [CrossRef]
- Baldocchi, D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method. Glob. Chang. Biol. 2014, 20, 3600–3609. [Google Scholar] [CrossRef] [PubMed]
- Burba, G.; Anderson, D. A Brief Practical Guide to Eddy Covariance Flux Measurements: Principles and Workflow Examples for Scientific and Industrial Applications, 1.0.1 ed.; LI-COR Biosciences: Lincoln, NE, USA, 2010; p. 212. [Google Scholar]
- Law, B.E. AmeriFlux Network Aids Global Synthesis. Eos 2007, 88. [Google Scholar] [CrossRef] [Green Version]
- Foken, T.; Mathias, G.; Mauder, M.; Mahrt, L.; Amiro, B.; Munger, W. Post-field data quality control. In Handbook of Micrometeorology; Springer: Dordrecht, The Netherlands, 2004; Chapter 9. [Google Scholar] [CrossRef]
- Morris, J.T.; Sundberg, K.; Hopkinson, C.S. Salt marsh primary production and its responses to relative sea level and nutrientsin estuaries at plum island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography 2013, 26, 78–84. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple parameterisation for flux footprint predictions. Bound.-Layer Meteorol. 2004, 112, 503–523. [Google Scholar] [CrossRef]
- Staff. Web Soil Survey. Natural Resources Conservation Service, United States Department of Agriculture. Available online: https://websoilsurvey.sc.egov.usda.gov/ (accessed on 1 August 2012).
- NOAA NERRS Centralized Data Management Office. System-Wide Monitoring Program. Data Accessed from the NOAA NERRS Centralized Data Management Office. Available online: http://www.nerrsdata.org (accessed on 15 July 2020).
Variable | Description | Units | |
---|---|---|---|
TIMEKEEPING | |||
TIMESTAMP_START | ISO timestamp start of averaging period | YYYYMMDDHHMM | |
TIMESTAMP_END | ISO timestamp end of averaging period | YYYYMMDDHHMM | |
BIOLOGICAL | |||
LEAF_WET | Leaf wetness, range 0–100 | % | |
FOOTPRINT | |||
FC_SSITC_TEST | Foken et al 2004 Post Field Quality Control [34] | adimensional | |
FETCH_70 | Distance at which footprint cumulative probability is 70% | m | |
FETCH_80 | Distance at which footprint cumulative probability is 80% | m | |
FETCH_90 | Distance at which footprint cumulative probability is 90% | m | |
FETCH_MAX | Distance at which footprint contribution is maximum | m | |
GASES | |||
CO | Carbon Dioxide (CO) mole fraction in wet air | molCO mol | |
CO_SIGMA | Standard deviation of carbon dioxide mole fraction in wet air | molCO mol | |
FC | Carbon Dioxide (CO) turbulent flux (no storage correction) | molCO m s | |
HO | Water (HO) vapor mole fraction | mmolHO mol | |
HO_SIGMA | Standard deviation of water vapor mole fraction | mmolHO mol | |
SC | CO storage flux | molCO m s | |
HEAT | |||
G | Soil heat flux | W m | |
H | Sensible heat turbulent flux (no storage correction) | W m | |
H_SSITC_TEST | Foken et al 2004 Post Field Quality Control [34] | adimensional | |
LE | Latent heat turbulent flux (no storage correction) | W m | |
LE_SSITC_TEST | Foken et al 2004 Post Field Quality Control [34] | adimensional | |
SH | Heat storage flux in the air | W m | |
SLE | Latent heat storage flux | W m | |
ATMOSPHERE | |||
PA | Atmospheric pressure | kPa | |
RH | Relative humidity, range 0–100 | % | |
T_SONIC | Sonic temperature | C | |
T_SONIC_SIGMA | Standard deviation of sonic temperature | C | |
TA | Air temperature | C | |
VPD | Vapor Pressure Deficit | hPa | |
PRECIPITATION | |||
P_RAIN | Rainfall | mm | |
RADIATION | |||
ALB | Albedo, range 0–100 | % | |
LW_IN | Longwave radiation, incoming | W m | |
LW_OUT | Longwave radiation, outgoing | W m | |
NDVI | Normalized Difference Vegetation Index | adimensional | |
NETRAD | Net radiation | W m | |
PPFD_IN | Photosynthetic photon flux density, incoming | molPhoton m s | |
PPFD_OUT | Photosynthetic photon flux density, outgoing | molPhoton m s | |
PRI | Photochemical Reflectance Index | adimensional | |
SW_DIF | Shortwave radiation, diffuse incoming | W m | |
SW_DIR | Shortwave radiation, direct incoming | W m | |
SW_IN | Shortwave radiation, incoming | W m | |
SW_OUT | Shortwave radiation, outgoing | W m | |
SOIL | |||
SWC | Soil water content (volumetric), range 0–100 | % | |
TS | Soil temperature | C | |
WIND | |||
MO_LENGTH | Monin-Obukhov length | m | |
TAU | Momentum flux | kg m s | |
TAU_SSITC_TEST | Foken et al 2004 Post Field Quality Control [34] | adimensional | |
U_SIGMA | Standard deviation of velocity fluctuations | m s | |
USTAR | Friction velocity | m s | |
V_SIGMA | Standard deviation of lateral velocity fluctuations | m s | |
W_SIGMA | Standard deviation of vertical velocity fluctuations | m s | |
WD | Wind direction | decimal degrees | |
WS | Wind speed | m s | |
WS_MAX | Maximum WS in the averaging period | m s | |
ZL | Monin-Obukhov Stability | adimensional |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forsythe, J.D.; O’Halloran, T.L.; Kline, M.A. An Eddy Covariance Mesonet For Measuring Greenhouse Gas Fluxes in Coastal South Carolina. Data 2020, 5, 97. https://doi.org/10.3390/data5040097
Forsythe JD, O’Halloran TL, Kline MA. An Eddy Covariance Mesonet For Measuring Greenhouse Gas Fluxes in Coastal South Carolina. Data. 2020; 5(4):97. https://doi.org/10.3390/data5040097
Chicago/Turabian StyleForsythe, Jeremy D., Thomas L. O’Halloran, and Michael A. Kline. 2020. "An Eddy Covariance Mesonet For Measuring Greenhouse Gas Fluxes in Coastal South Carolina" Data 5, no. 4: 97. https://doi.org/10.3390/data5040097