Video Recordings of Male Face and Neck Movements for Facial Recognition and Other Purposes
<p>Depicts the positions of lights and the video camera.</p> "> Figure 2
<p>The different lighting settings used for each video (left to right: Warm, Cold, Low, Medium, and High).</p> "> Figure 3
<p>Subjects were told to position their head in multiple orientations, for one second at a time, during video recording.</p> ">
Abstract
:1. Summary
2. Background
3. Experimental Design, Materials, and Methods
3.1. Equipment and Setup
3.2. Lighting
3.3. Subjects & Procedure
4. Comparison to Other Data Sets
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Denimarck, P.; Bellis, D.; McAllister, C. Biometric System and Method for Identifying a Customer upon Entering a Retail Establishment. U.S. Patent Application No. US2003/0018522 A1, 23 January 2003. [Google Scholar]
- Lu, D.; Kiewit, D.A.; Zhang, J. Market Research Method and System for Collecting Retail Store and Shopper Market Research Data. U.S. Patent US005331544A, 19 July 1994. [Google Scholar]
- Kail, K.J.; Williams, C.B.; Kail Richard, L. Access Control System with RFID and Biometric Facial Recognition. U.S. Patent Application No. US2007/0252001 A1, 1 November 2007. [Google Scholar]
- Introna, L.; Wood, D. Picturing algorithmic surveillance: The politics of facial recognition systems. Surveill. Soc. 2004, 2, 177–198. [Google Scholar] [CrossRef]
- Wiskott, L.; Fellous, J.-M.; Krüger, N.; von der Malsburg, C. Face Recognition and Gender Determination. In Proceedings of the International Workshop on Automatic Face and Gesture Recognition, Zurich, Switzerland, 26–28 June 1995; pp. 92–97. [Google Scholar]
- Ramesha, K.; Raja, K.B.; Venugopal, K.R.; Patnaik, L.M. Feature Extraction based Face Recognition, Gender and Age Classification. Int. J. Comput. Sci. Eng. 2010, 2, 14–23. [Google Scholar]
- Yeasin, M.; Sharma, R.; Yeasin, M.; Member, S.; Bullot, B. Recognition of facial expressions and measurement of levels of interest from video. IEEE Trans. Multimed. 2006, 8, 500–508. [Google Scholar] [CrossRef]
- Michel, P.; El Kaliouby, R. Real time facial expression recognition in video using support vector machines. In Proceedings of the 5th International Conference on Multimodal Interfaces-ICMI ’03, Vancouver, BC, Canada, 5–7 November 2003; ACM Press: New York, NY, USA, 2003; p. 258. [Google Scholar] [Green Version]
- Cohen, I.; Sebe, N.; Garg, A.; Lew, M.S.; Huang, T.S. Facial expression recognition from video sequences. In Proceedings of the IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, 26–29 August 2002; pp. 121–124. [Google Scholar]
- Littlewort, G.; Bartlett, M.S.; Fasel, I.; Susskind, J.; Movellan, J. Dynamics of facial expression extracted automatically from video. Image Vis. Comput. 2006, 24, 615–625. [Google Scholar] [CrossRef]
- Uddin, M.; Lee, J.; Kim, T.-S. An enhanced independent component-based human facial expression recognition from video. IEEE Trans. Consum. Electron. 2009, 55, 2216–2224. [Google Scholar] [CrossRef]
- Valstar, M.; Pantic, M.; Patras, I. Motion history for facial action detection in video. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics—Cover (IEEE Cat. No.04CH37583), The Hague, The Netherlands, 10–13 October 2004; pp. 635–640. [Google Scholar]
- Matta, F.; Dugelay, J.-L. Person recognition using facial video information: A state of the art. J. Vis. Lang. Comput. 2009, 20, 180–187. [Google Scholar] [CrossRef]
- Gorodnichy, D.O. Facial Recognition in Video. In Audio- and Video-Based Biometric Person Authentication, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 505–514. [Google Scholar] [Green Version]
- The Database of Faces. Available online: https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html (accessed on 29 January 2019).
- Guo, Y.; Zhang, L.; Hu, Y.; He, X.; Gao, J. MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition. arXiv. 2016. Available online: https://arxiv.org/abs/1607.08221 (accessed on 15 July 2019).
- Learned-Miller, E.; Huang, G.B.; RoyChowdhury, A.; Li, H.; Hua, G. Labeled Faces in the Wild: A Survey. In Advances in Face Detection and Facial Image Analysis; Kawulok, M., Celebi, M.E., Eds.; Springer: Basel, Switzerland, 2016. [Google Scholar]
- Salari, S.R.; Rostami, H. Pgu-Face: A dataset of partially covered facial images. Data Brief 2016, 9, 288–291. [Google Scholar] [CrossRef] [Green Version]
- Ahonen, T.; Rahtu, E.; Ojansivu, V.; Heikkila, J. Recognition of blurred faces using Local Phase Quantization. In Proceedings of the 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008; pp. 1–4. [Google Scholar]
- Klare, B.; Klein, B.; Taborsky, E.; Blanton, A.; Cheney, J.; Allen, K.E.; Grother, P.; Mah, A.; Jain, A.K.; Burge, M.; et al. Pushing the Frontiers of Unconstrained Face Detection and Recognition: IARPA Janus Benchmark A. In Proceedings of the Computer Vision and Pattern Recognition Conference, Boston, MA, USA, 7–12 June 2015; pp. 1931–1939. [Google Scholar]
- Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 94–101. [Google Scholar]
- Gros, C.; Straub, J. Human face images from multiple perspectives with lighting from multiple directions with no occlusion, glasses and hat. Data Brief 2018, 22, 522–529. [Google Scholar] [CrossRef]
- Gros, C.; Straub, J. A Dataset for Comparing Mirrored and Non-Mirrored Male Bust Images for Facial Recognition. Data 2019, 4, 26. [Google Scholar] [CrossRef]
- Nefian, A.V. Georgia Tech Face Database. Available online: http://www.anefian.com/research/face_reco.htm (accessed on 15 July 2019).
- Martinez, A.M. AR Face Database Webpage. Available online: http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html (accessed on 22 August 2019).
- Georghiades, A.S.; Belhumeur, P.N.; Kriegman, D.J. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 643–660. [Google Scholar] [CrossRef]
Location | X Coordinate | Y Coordinate |
---|---|---|
Subject Light | 84.5 | 127.5 |
Background 1 | 43.5 | 50.5 |
Background 2 | 129 | 47 |
Camcorder | 97 | 132 |
Subject | 96.5 | 63.5 |
Configuration | Light Settings | Lumens |
---|---|---|
Warm | 60% brightness on warm (3200 k) | 280 |
Cold | 60% brightness on cold (5500 k) | 391 |
Low | 10% brightness on warm (3200 k) and 10% brightness on cold (5500 k) | 155 |
Medium | 40% brightness on warm (3200 k) and 40% on brightness on cold (5500 k) | 492 |
High | 70% brightness on warm (3200 k) and 70% brightness on cold (5500 k) | 745 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gros, C.; Straub, J. Video Recordings of Male Face and Neck Movements for Facial Recognition and Other Purposes. Data 2019, 4, 130. https://doi.org/10.3390/data4030130
Gros C, Straub J. Video Recordings of Male Face and Neck Movements for Facial Recognition and Other Purposes. Data. 2019; 4(3):130. https://doi.org/10.3390/data4030130
Chicago/Turabian StyleGros, Collin, and Jeremy Straub. 2019. "Video Recordings of Male Face and Neck Movements for Facial Recognition and Other Purposes" Data 4, no. 3: 130. https://doi.org/10.3390/data4030130