How to Make Sense of Team Sport Data: From Acquisition to Data Modeling and Research Aspects
<p>From acquisition (e.g., video processing) and data enrichment (e.g., data fusion) through context information to in-depth analysis tasks (e.g., trajectory analysis) on the raw data, many research fields are covered when analyzing team sport data.</p> "> Figure 2
<p>Relations and hierarchies between different data types in team sport. Most data can be extracted either from video or sensor data. Additional information is provided by supplemental context data.</p> "> Figure 3
<p>Various different kinds of events categorized by their characteristics.</p> "> Figure 4
<p>The abstract ingredients of team sport.</p> "> Figure 5
<p>Two recent systems that aim to improve the understanding of sport data by several visualization techniques. (<b>a</b>) TenniVis [<a href="#B55-data-02-00002" class="html-bibr">55</a>]; (<b>b</b>) SoccerStories [<a href="#B56-data-02-00002" class="html-bibr">56</a>].</p> "> Figure 6
<p>Example uses of different information visualization techniques in recent publications in the field of visual sport analytics. (<b>a</b>) Enhanced parallel coordinates [<a href="#B57-data-02-00002" class="html-bibr">57</a>] displaying, for a single player, the average values of four features within a phase. Each line represents a phase, which is defined as a time-interval, in which player behavior doesn’t change; (<b>b</b>) Spatial visualization [<a href="#B58-data-02-00002" class="html-bibr">58</a>] highlighting the dangerousness of set plays executed in various regions of the soccer pitch. The dangerousness for each region is mapped to the blue hue. White meaning safe, dark blue meaning dangerousnes; (<b>c</b>) Temporal visualization [<a href="#B22-data-02-00002" class="html-bibr">22</a>] displaying the occurence of user-selected events, like fouls, goals or exchanges; (<b>d</b>) Horizon graph [<a href="#B21-data-02-00002" class="html-bibr">21</a>] showing the feature <span class="html-italic">speed</span> for two defense players within a set time interval.</p> "> Figure 7
<p>Interaction Spaces (<b>a</b>) [<a href="#B23-data-02-00002" class="html-bibr">23</a>] are designed to visualize the surrounding area each player aims to control; Free Spaces (<b>b</b>) [<a href="#B23-data-02-00002" class="html-bibr">23</a>] describe how much players are put under pressure.</p> ">
Abstract
:1. Introduction
2. Team Sport Data
2.1. Video and Sensor Data
2.1.1. Movement Data
2.1.2. Event Data
- Rule-induced events are events that occur as a result of the match rules. For example, if the ball passes the sideline of the soccer pitch, it has to be thrown in again by the opposite team.
- Events tagged with prosecution indicate that there was a foul behavior of the related player(s) which is penalized.
- Player interactions with ball is about events that happen when a player is touching the ball. Observable, almost every event that gets tagged falls under this category besides yellow and red cards, the end of a halftime and a substitution.
- Events that interrupt the match gets marked as gameplay interruption.
- If an event has a direct relation to scoring (e.g., a shot on the goal) we mark it as scoring related.
2.1.3. Descriptive (Statistical) Data/Derived Data
2.2. Context
News and Social Media
3. Abstracting the Data Space
4. Research Aspects
4.1. Definitions
4.1.1. Behavior
4.1.2. Movement Pattern
4.1.3. Group Behavior and Movement
4.2. Research Challenges
5. Methodology
5.1. Data Modeling
5.2. Data Mining
5.2.1. Clustering
5.2.2. Classification
5.2.3. Regression
5.2.4. Summarization
5.2.5. Change and Deviation Detection
5.2.6. Dependency Modeling
5.2.7. Summary
5.3. Information Visualization
5.4. Visual Analytics
6. Discussion and Conclusions
Author Contributions
Conflicts of Interest
References
- Ryan, M. The Impossible Job: Sky TV Have 24 Cameras but Referees Can Only See So Much. 2010. Available online: http://www.dailymail.co.uk/sport/football/article-1301170/The-impossible-job-Sky-TV-24-cameras-referees-much.html (accessed on 24 June 2016).
- Glaser, A. The Cameras That’ll Make the Super Bowl Way More Interesting This Year. 2016. Available online: http://www.wired.com/2016/01/the-cameras-thatll-make-the-super-bowl-way-more-interesting-this-year/ (accessed on 24 June 2016).
- STATS. Available online: http://www.stats.com/ (accessed on 8 August 2016).
- Opta. Available online: http://www.optasports.com/ (accessed on 8 August 2016).
- Seo, Y.; Choi, S.; Kim, H.; Hong, K.S. Where are the ball and players? Soccer game analysis with color-based tracking and image mosaick. In Proceedings of the International Conference on Image Analysis and Processing, Florence, Italy, 17–19 September 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 196–203. [Google Scholar]
- Liu, J.; Tong, X.; Li, W.; Wang, T.; Zhang, Y.; Wang, H. Automatic player detection, labeling and tracking in broadcast soccer video. Pattern Recognit. Lett. 2009, 30, 103–113. [Google Scholar] [CrossRef]
- Pérez, P.; Hue, C.; Vermaak, J.; Gangnet, M. Color-based probabilistic tracking. In Proceedings of the European Conference on Computer Vision, Copenhagen, Denmark, 28–31 May 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 661–675. [Google Scholar]
- Pelissero, T. Player-Tracking System Will Let NFL Fans Go Deeper Than Ever. 2014. Available online: http://www.usatoday.com/story/sports/nfl/2014/07/30/metrics-sensor-shoulder-pads-zebra-speed-tracking/13382443/ (accessed on 24 June 2016).
- Zebra Technologies. Available online: https://www.zebra.com/us/en/nfl.html (accessed on 8 August 2016).
- ACM DEBS 2013 Grand Challenge. Available online: http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails (accessed on 8 August 2016).
- Pishchulin, L.; Insafutdinov, E.; Tang, S.; Andres, B.; Andriluka, M.; Gehler, P.V.; Schiele, B. DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation. CoRR arXiv 2015. [Google Scholar]
- Insafutdinov, E.; Pishchulin, L.; Andres, B.; Andriluka, M.; Schiele, B. DeeperCut: A Deeper, Stronger, and Faster Multi-person Pose Estimation Model. In Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, 11–14 October 2016; pp. 34–50.
- Tovinkere, V.; Qian, R.J. Detecting Semantic Events in Soccer Games: Towards A Complete Solution. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Tokyo, Japan, 25 August 2001.
- Ekin, A.; Tekalp, A.M.; Mehrotra, R. Automatic soccer video analysis and summarization. IEEE Trans. Image Process. 2003, 12, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Chang, S.F.; Divakaran, A.; Sun, H. Structure analysis of soccer video with hidden Markov models. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Orlando, FL, USA, 13 May 2002; Volume 4.
- Assfalg, J.; Bertini, M.; Colombo, C.; Del Bimbo, A.; Nunziati, W. Semantic annotation of soccer videos: Automatic highlights identification. Comput. Vis. Image Underst. 2003, 92, 285–305. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.F.; Zhu, G.; Rui, Y.; Lu, H.; Huang, Q. Using webcast text for semantic event detection in broadcast sports video. IEEE Trans. Multimed. 2008, 10, 1342–1355. [Google Scholar]
- Newell, C.D.; Wood, M.D.; Costello, K.M.; Poetker, R.B. Automatic Story Creation Using Semantic Classifiers for Images and Associated Meta Data. U.S. Patent 200,803,069,95 A1, 11 December 2008. [Google Scholar]
- Radelet, M.A.; Lephart, S.M.; Rubinstein, E.N.; Myers, J.B. Survey of the injury rate for children in community sports. Pediatrics 2002, 110, e28. [Google Scholar] [CrossRef] [PubMed]
- Kujala, U.M.; Taimela, S.; Antti-Poika, I.; Orava, S.; Tuominen, R.; Myllynen, P. Acute injuries in soccer, ice hockey, volleyball, basketball, judo, and karate: Analysis of national registry data. BMJ 1995, 311, 1465–1468. [Google Scholar] [CrossRef] [PubMed]
- Janetzko, H.; Sacha, D.; Stein, M.; Schreck, T.; Keim, D.A.; Deussen, O. Feature-driven visual analytics of soccer data. In Proceedings of the 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), Paris, France, 25 October 2014; pp. 13–22.
- Stein, M.; Häußler, J.; Jäckle, D.; Janetzko, H.; Schreck, T.; Keim, D.A. Visual Soccer Analytics: Understanding the Characteristics of Collective Team Movement Based on Feature-Driven Analysis and Abstraction. ISPRS Int. J. Geo-Inform. 2015, 4, 2159–2184. [Google Scholar] [CrossRef]
- Stein, M.; Janetzko, H.; Breitkreutz, T.; Seebacher, D.; Schreck, T.; Grossniklaus, M.; Couzin, I.D.; Keim, D.A. Director’s Cut: Analysis and Annotation of Soccer Matches. IEEE Comput. Graph. Appl. 2016, 36, 50–60. [Google Scholar] [CrossRef]
- Football.db—Free Open Public Domain Football Data. Available online: http://openfootball.github.io/ (accessed on 8 August 2016).
- SoccerStats.us. Available online: http://soccerstats.us/ (accessed on 8 August 2016).
- Football-data.org—RESTful Football Data. Available online: http://api.football-data.org/index (accessed on 8 August 2016).
- FootballSquads. Available online: http://www.footballsquads.co.uk/ (accessed on 8 August 2016).
- Football Data Dump from football-data.co.uk. Available online: https://github.com/jokecamp/FootballData/tree/master/football-data.co.uk (accessed on 8 August 2016).
- Bergmann, T.; Bunk, S.; Eschrig, J.; Hentschel, C.; Knuth, M.; Sack, H.; Schüler, R. Linked Soccer Data; I-SEMANTICS (Posters & Demos); Citeseer: Gaithersburg, MD, USA, 2013; pp. 25–29. [Google Scholar]
- StadiumDB—Stadium Database. Available online: http://stadiumdb.com (accessed on 8 August 2016).
- NNDC—Climate Data Online. Available online: http://www7.ncdc.noaa.gov/CDO/cdo (accessed on 8 August 2016).
- Ekin, A.; Tekalp, A.M. Robust dominant color region detection and color-based applications for sports video. In Proceedings of the 2003 International Conference on Image Processing (ICIP 2003), Barcelona, Spain, 14 September 2003; Volume 1.
- Twitter Developers. Available online: https://dev.twitter.com/ (accessed on 9 August 2016).
- Reddit API Documentation. Available online: https://www.reddit.com/dev/api/ (accessed on 9 August 2016).
- Wikipedia. Available online: https://www.wikipedia.org/ (accessed on 7 November 2016).
- Yucesoy, B.; Barabási, A. Untangling performance from success. EPJ Data Sci. 2016, 5, 17. [Google Scholar] [CrossRef]
- European Media Monitor. Available online: https://emm.newsbrief.eu (accessed on 9 August 2016).
- BBC Sport—American Football—NFL in a Nutshell. Available online: http://news.bbc.co.uk/sport2/hi/other_sports/american_football/3192002.stm (accessed on 21 July 2016).
- Paolo Cintia, M.C.; Pappalardo, L. The Haka Network: Evaluating Rugby Team Performance with Dynamic Graph Analysis. In Proceedings of the DyNo, 2nd International Workshop on Dynamics in Networks, San Francisco, CA, USA, 18 August 2016.
- Gudmundsson, J.; Horton, M. Spatio-Temporal Analysis of Team Sports—A Survey. CoRR arXiv 2016. [Google Scholar]
- Movebank. Available online: http://movebank.org (accessed on 8 August 2016).
- Andrienko, G.; Andrienko, N.; Bak, P.; Keim, D.; Wrobel, S. Visual Analytics of Movement; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Andrienko, N.; Andrienko, G.; Barrett, L.; Dostie, M.; Henzi, P. Space transformation for understanding group movement. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.-C. A review on time series data mining. Eng. Appl. Artif. Intell. 2011, 24, 164–181. [Google Scholar] [CrossRef]
- Aigner, W.; Miksch, S.; Schumann, H.; Tominski, C. Visualization of Time-Oriented Data; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- De Berg, M.; Van Kreveld, M.; Overmars, M.; Schwarzkopf, O.C. Computational geometry. In Computational Geometry; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–17. [Google Scholar]
- Kang, C.H.; Hwang, J.R.; Li, K.J. Trajectory analysis for soccer players. In Proceedings of the 2006 Sixth IEEE International Conference on Data Mining Workshops (ICDM Workshops), Hong Kong, China, 18 December 2006; pp. 377–381.
- Cintia, P.; Giannotti, F.; Pappalardo, L.; Pedreschi, D.; Malvaldi, M. The harsh rule of the goals: Data-driven performance indicators for football teams. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 19 October 2015; pp. 1–10.
- Cintia, P.; Rinzivillo, S.; Pappalardo, L. A network-based approach to evaluate the performance of football teams. In Proceedings of the Machine Learning and Data Mining for Sports Analytics Workshop, Porto, Portugal, 11 September 2015.
- Pena, J.L.; Touchette, H. A network theory analysis of football strategies. arXiv 2012. [Google Scholar]
- Bourbousson, J.; Poizat, G.; Saury, J.; Seve, C. Team coordination in basketball: Description of the cognitive connections among teammates. J. Appl. Sport Psychol. 2010, 22, 150–166. [Google Scholar] [CrossRef]
- Clemente, F.M.; Couceiro, M.S.; Martins, F.M.L.; Mendes, R.S. Using network metrics in soccer: A macro-analysis. J. Hum. Kinet. 2015, 45, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Russom, P. Big Data Analytics–TDWI Best Practices Report, 4th Quarter; The Data Warehousing Institute: Renton, WA, USA, 2011; pp. 1–35. [Google Scholar]
- Buhl, H.U.; Röglinger, M.; Moser, F.; Heidemann, J. Big data. Bus. Inform. Syst. Eng. 2013, 5, 65–69. [Google Scholar] [CrossRef]
- Polk, T.; Yang, J.; Hu, Y.; Zhao, Y. Tennivis: Visualization for tennis match analysis. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2339–2348. [Google Scholar] [CrossRef] [PubMed]
- Perin, C.; Vuillemot, R.; Fekete, J.D. SoccerStories: A kick-off for visual soccer analysis. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2506–2515. [Google Scholar] [CrossRef] [PubMed]
- Janetzko, H.; Stein, M.; Sacha, D.; Schreck, T. Enhancing Parallel Coordinates: Statistical Visualizations for Analyzing Soccer Data. In Proceedings of the IS&T Electronic Imaging Conference on Visualization and Data Analysis, San Francisco, CA, USA, 14 February 2016.
- Stein, M.; Janetzko, H.; Lamprecht, A.; Seebacher, D.; Schreck, T.; Keim, D.A.; Grossniklaus, M. From Game Events to Team Tactics: Visual Analysis of Dangerous Situations in Multi-Match Data. In Proceedings of the International Conference on Technology and Innovation in Sports, Health and Wellbeing, Special Track “High level Sports in the XXI Century: Contribution From Industry and University to the Performance Optimization”, Vila Real, Portugal, 1 December 2016.
- Gomez-Marin, A.; Stephens, G.J.; Louis, M. Active sampling and decision making in Drosophila chemotaxis. Nat. Commun. 2011, 2, 441. [Google Scholar] [CrossRef] [PubMed]
- Giannotti, F.; Nanni, M.; Pinelli, F.; Pedreschi, D. Trajectory pattern mining. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA, 12 August 2007; pp. 330–339.
- Kays, R.; Crofoot, M.C.; Jetz, W.; Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 2015, 348. [Google Scholar] [CrossRef] [PubMed]
- Bergner, R.M. What is behavior? And so what? New Ideas Psychol. 2011, 29, 147–155. [Google Scholar] [CrossRef]
- Hogan, J.A. A framework for the study of behavior. Behav. Process. 2015, 117, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Sumpter, D.J. Collective Animal Behavior; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Turner, R.H.; Killian, L.M. Collective Behavior; Prentice Hall: Upper Saddle River, NJ, USA, 1957. [Google Scholar]
- Araújo, D.; Davids, K. Team synergies in sport: Theory and measures. Front. Psychol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.; Araújo, D.; Correia, V.; Davids, K. Sports teams as superorganisms. Sports Med. 2012, 42, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Demšar, U.; Buchin, K.; Cagnacci, F.; Safi, K.; Speckmann, B.; van de Weghe, N.; Weiskopf, D.; Weibel, R. Analysis and visualisation of movement: An interdisciplinary review. Mov. Ecol. 2015, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- IMPECT. Available online: http://www.impect.com (accessed on 7 November 2016).
- Regenhuber, M. IMPECT & Packing: The Future of Football Analytics Is Here. Available online: http://bundesligafanatic.com/impect-packing-the-future-of-football-analytics-is-here/ (accessed on 7 November 2016).
- Strandburg-Peshkin, A.; Twomey, C.R.; Bode, N.W.; Kao, A.B.; Katz, Y.; Ioannou, C.C.; Rosenthal, S.B.; Torney, C.J.; Wu, H.S.; Levin, S.A.; et al. Visual sensory networks and effective information transfer in animal groups. Curr. Biol. 2013, 23, R709–R711. [Google Scholar] [CrossRef] [PubMed]
- Niwa, H.S. Space-irrelevant scaling law for fish school sizes. J. Theor. Biol. 2004, 228, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 1995, 75, 1226. [Google Scholar] [CrossRef] [PubMed]
- Biro, D.; Sumpter, D.J.; Meade, J.; Guilford, T. From compromise to leadership in pigeon homing. Curr. Biol. 2006, 16, 2123–2128. [Google Scholar] [CrossRef] [PubMed]
- Helbing, D.; Keltsch, J.; Molnar, P. Modelling the evolution of human trail systems. Nature 1997, 388, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Helbing, D.; Schweitzer, F.; Keltsch, J.; Molnár, P. Active walker model for the formation of human and animal trail systems. Phys. Rev. E 1997, 56, 2527. [Google Scholar] [CrossRef]
- Schelling, T.C. Models of segregation. Am. Econ. Rev. 1969, 59, 488–493. [Google Scholar]
- Keim, D.A.; Kohlhammer, J.; Ellis, G.; Mansmann, F. Mastering the Information Age-Solving Problems with Visual Analytics; Eurographics: Goslar, Germany, 2010. [Google Scholar]
- Leser, R.; Moser, B.; Hoch, T.; Stoegerer, J.; Kellermayr, G.; Reinsch, S.; Baca, A. Expert-oriented modelling of a 1vs1-situation in football. Int. J. Perform. Anal. Sport 2015, 15, 949–966. [Google Scholar]
- Schmidhofer, S.; Leser, R.; Ebert, M. A comparison between the structure in elite tennis and kids tennis on scaled courts (Tennis 10s). Int. J. Perform. Anal. Sport 2014, 14, 829–840. [Google Scholar]
- MacKenzie, R.; Cushion, C. Performance analysis in football: A critical review and implications for future research. J. Sports Sci. 2013, 31, 639–676. [Google Scholar] [CrossRef] [PubMed]
- Carling, C.; Wright, C.; Nelson, L.J.; Bradley, P.S. Comment on ’Performance analysis in football: A critical review and implications for future research’. J. Sports Sci. 2014, 32, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Bourbosson, J.; Seve, C.; McGarry, T. Space-time coordination dynamics in basketball: Part 1. Intra- and inter-couplings among player dyads. J. Sports Sci. 2010, 28, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Bourbosson, J.; Seve, C.; McGarry, T. Space-time coordination dynamics in basketball: Part 2. The interaction between the two teams. J. Sports Sci. 2010, 28, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Frencken, W.; de Poel, H.; Visscher, C.; Lemmink, K. Variablitiy of inter-team distances associated with match events in elite-standard soccer. J. Sports Sci. 2012, 30, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Link, D. Using of Invasion Profiles as a Performance Indicator in Soccer. In Proceedings of the International Association of Computer Science in Sports Conference, Darwin, Australia, 22 June 2014.
- Grund, T.U. Network structure and team performance: The case of English Premier League soccer teams. Soc. Netw. 2012, 34, 682–690. [Google Scholar] [CrossRef]
- Taki, T.; Hasegawa, J. Visualization of Dominant Region in Team Games and Its Application to Teamwork Analysis. In Proceedings of the International Conference on Computer Graphics (CGI’00), Hong Kong, 3 October 2000; p. 227.
- Fujimura, A.; Sugihara, K. Geometric analysis and quantitative evaluation of sport teamwork. Syst. Comput. Jpn. 2005, 36, 49–58. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Wolle, T. Football analysis using spatio-temporal tools. Comput. Environ. Urban Syst. 2014, 47, 16–27. [Google Scholar] [CrossRef]
- Xia, L.; Wang, Q.; Wu, L. Vision-based behavior prediction of ball carrier in basketball matches. J. Cent. South Univ. 2012, 19, 2142–2151. [Google Scholar] [CrossRef]
- Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. From data mining to knowledge discovery in databases. AI Mag. 1996, 17, 37. [Google Scholar]
- Chakrabarti, S.; Ester, M.; Fayyad, U.; Gehrke, J.; Han, J.; Morishita, S.; Piatetsky-Shapiro, G.; Wang, W. Data Mining Curriculum: A Proposal, Version 1.0; Intensive Working Group of ACM SIGKDD Curriculum Committee: New York, NY, USA, 2006; p. 140. [Google Scholar]
- Estivill-Castro, V. Why so many clustering algorithms: A position paper. ACM SIGKDD Explor. Newsl. 2002, 4, 65–75. [Google Scholar] [CrossRef]
- Lee, J.G.; Han, J.; Whang, K.Y. Trajectory clustering: A partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, Beijing, China, 11 June 2007; pp. 593–604.
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June 1967; Volume 1, pp. 281–297.
- Lindley, D. Regression and correlation analysis. In Time Series and Statistics; Springer: Berlin/Heidelberg, Germany, 1990; pp. 237–243. [Google Scholar]
- Dick, M.; Wellnitz, O.; Wolf, L. Analysis of factors affecting players’ performance and perception in multiplayer games. In Proceedings of 4th ACM SIGCOMM Workshop on Network and System Support for Games, Hawthorne, NY, USA, 10 October 2005; pp. 1–7.
- Carlin, B.P. Improved NCAA basketball tournament modeling via point spread and team strength information. Am. Stat. 1996, 50, 39–43. [Google Scholar] [CrossRef]
- Chandola, V.; Kumar, V. Summarization—Compressing data into an informative representation. Knowl. Inform. Syst. 2007, 12, 355–378. [Google Scholar] [CrossRef]
- Person, K. On Lines and Planes of Closest Fit to System of Points in Space. Philios. Mag. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Maaten, L.v.d.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Grubbs, F.E. Sample criteria for testing outlying observations. Ann. Math. Stat. 1950, 21, 27–58. [Google Scholar] [CrossRef]
- Klemettinen, M.; Mannila, H.; Ronkainen, P.; Toivonen, H.; Verkamo, A.I. Finding interesting rules from large sets of discovered association rules. In Proceedings of the Third International Conference on Information and Knowledge Management, Gaithersburg, MD, USA, 29 November 1994; pp. 401–407.
- Inselberg, A. The plane with parallel coordinates. Vis. Comput. 1985, 1, 69–91. [Google Scholar] [CrossRef]
- Reijner, H. The Development of the Horizon Graph. Electronic Proceedings of the VisWeekWorkshop From Theory to Practice: Design, Vision and Visualization. 2008. Available online: http://www.stonesc.com/Vis08_Workshop/DVD/Reijner_submission.pdf (accessed on 29 December 2016).
- Keim, D.A. Designing pixel-oriented visualization techniques: Theory and applications. IEEE Trans. Vis. Comput. Graph. 2000, 6, 59–78. [Google Scholar] [CrossRef]
- Keim, D.A.; Ankerst, M.; Kriegel, H.P. Recursive pattern: A technique for visualizing very large amounts of data. In Proceedings of the 6th Conference on Visualization, Washington, DC, USA, 29 October 1995; p. 279.
- Simon, S.; Mittelstädt, S.; Keim, D.A.; Sedlmair, M. Bridging the Gap of Domain and Visualization Experts with a Liaison. In Eurographics Conference on Visualization (EuroVis)—Short Papers; Bertini, E., Kennedy, J., Puppo, E., Eds.; The Eurographics Association: Cagliari, Italy, 2015. [Google Scholar]
- Grehaigne, J.F.; Bouthier, D.; David, B. Dynamic-system analysis of opponent relationships in collective actions in soccer. J. Sports Sci. 1997, 15, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Biermann, C. Wir Wollen Eine Revolution. 2015. Available online: http://www.11freunde.de/interview/ist-datensammeln-im-fussball-sinnlos (accessed on 7 September 2016).
Statistic | Brazil | Germany |
---|---|---|
Goals | 1 | 7 |
Possession | 52% | 48% |
Shots | 18 | 14 |
Duel Quota | 51% | 49% |
Packing | 341 | 402 |
IMPECT | 53 | 84 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stein, M.; Janetzko, H.; Seebacher, D.; Jäger, A.; Nagel, M.; Hölsch, J.; Kosub, S.; Schreck, T.; Keim, D.A.; Grossniklaus, M. How to Make Sense of Team Sport Data: From Acquisition to Data Modeling and Research Aspects. Data 2017, 2, 2. https://doi.org/10.3390/data2010002
Stein M, Janetzko H, Seebacher D, Jäger A, Nagel M, Hölsch J, Kosub S, Schreck T, Keim DA, Grossniklaus M. How to Make Sense of Team Sport Data: From Acquisition to Data Modeling and Research Aspects. Data. 2017; 2(1):2. https://doi.org/10.3390/data2010002
Chicago/Turabian StyleStein, Manuel, Halldór Janetzko, Daniel Seebacher, Alexander Jäger, Manuel Nagel, Jürgen Hölsch, Sven Kosub, Tobias Schreck, Daniel A. Keim, and Michael Grossniklaus. 2017. "How to Make Sense of Team Sport Data: From Acquisition to Data Modeling and Research Aspects" Data 2, no. 1: 2. https://doi.org/10.3390/data2010002
APA StyleStein, M., Janetzko, H., Seebacher, D., Jäger, A., Nagel, M., Hölsch, J., Kosub, S., Schreck, T., Keim, D. A., & Grossniklaus, M. (2017). How to Make Sense of Team Sport Data: From Acquisition to Data Modeling and Research Aspects. Data, 2(1), 2. https://doi.org/10.3390/data2010002