Configuration of Low-Cost Miniature Heat Pulse Probes to Monitor Heat Velocity for Sap Flow Assessments in Wheat (Triticum durum L.)
<p>Location of the facilities where the experiments were performed. (<b>A</b>) Location of the Nainari campus of the Sonora Institute of Technology (ITSON) in Ciudad Obregon, Mexico (yellow polygon). (<b>B</b>) Location of Ciudad Obregon within the Northwestern Mexican State of Sonora. (<b>C</b>) Location of the greenhouse and laboratory facilities within ITSON’s campus (star).</p> "> Figure 2
<p>The general appearance of the sensor for estimating heat velocity in wheat stems (<b>A</b>), detailed dimensions of the rectangular-shaped casing showing the heater with upper and lower thermocouples (<b>B</b>). Components of the heat velocity monitoring system depicting the heat velocity gauge and a heat pulse control panel (<b>C</b>), which are then connected to a datalogger aided by a multiplexer.</p> "> Figure 3
<p>Insulation capsule used to minimize the effects of environmental factors on temperature readings from the sensor thermocouples and ensure good contact between the sensor and the wheat stem. (<b>A</b>) The heat velocity sensor installed in a main wheat stem. The capsule wrapped around the sensor using a couple of layers of the following materials: (<b>B</b>) Parafilm<sup>®</sup>, (<b>C</b>) polyurethane sheets, (<b>D</b>) bubble wrap, and (<b>E</b>) aluminum foil. (<b>F</b>) Appearance of the insulation capsule installed on the wheat stem.</p> "> Figure 4
<p>Aspect of the experiment carried out within a greenhouse at the beginning of the grain filling stage. As observed, a heat velocity sensor wrapped with an insulation capsule was installed on each wheat plant and connected to a multiplexer and datalogger (both were inside the enclosure, located to the right of the image). In addition, temperature and relative humidity near the plants were continuously measured with a HMP45C (Vaisala) sensor (left of the image).</p> "> Figure 5
<p>Temperature variation in the downstream (<span class="html-italic">δT<sub>d</sub></span>; blue solid line) and upstream (<span class="html-italic">δT<sub>u</sub></span>; red solid line) thermocouples, including their standard error of the sample mean (<span class="html-italic">n</span> = 14) (orange and blue-colored polygons), in response to a 6-s thermal pulse (shown as a red dashed line between 0 and 6 s). The period of temperature stabilization used for averaging the upstream and downstream temperatures ranged between 20 and 40 s after the heat pulse with a midpoint of <span class="html-italic">t</span><sub>m</sub> = 30 s. The gray zone represents the range of temperature variations during 18 days of observations integrating roughly 2500 pulses.</p> "> Figure 6
<p>Time series of heat velocity (V<span class="html-italic"><sub>h</sub></span>) with its standard deviation of the mean (shaded red in the upper panel), photosynthetically active radiation (PAR, middle panel), and vapor pressure deficit (VPD, lower panel) with a 10-min timestep. The measurements were taken in three periods of six days each during milk development (Z7.0), dough development, and (Z8.0) end of grain filling or beginning of ripening (Z9.0) in the Zadoks’decimal scale [<a href="#B37-grasses-03-00024" class="html-bibr">37</a>]. The data presented corresponds to the mean of fourteen heat pulse probes performed on an equal number of wheat plants.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Heat Pulse Method to Estimate Heat Velocity
2.3. Experimental Design and Sensor Installation
2.4. Data Collection and Analysis
3. Results
3.1. Heat Pulse Stability
3.2. Variability of Heat Velocity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-López, R.; Ojeda-Bustamante, W.; López Andrade, A.P.; Catalán-Valencia, E.A. Heat pulse method and sap flow for measuring transpiration in cacao. Rev. Chapingo Ser. Zonas Áridas 2013, 12, 85–96. [Google Scholar] [CrossRef]
- Nobel, P.S. Physicochemical and Environmental Plant Physiology; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Argentel-Martínez, L.; Garatuza-Payan, J.; Yepez, E.A.; Arredondo, T.; de los Santos-Villalobos, S. Water regime and osmotic adjustment under warming conditions on wheat in the Yaqui Valley, Mexico. PeerJ 2019, 2019, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Lobell, D.B.; Tebaldi, C. Getting caught with our plants down: The risks of a global crop yield slowdown from climate trends in the next two decades. Environ. Res. Lett. 2014, 9, 074003. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- McAusland, L.; Acevedo-Siaca, L.G.; Pinto, R.S.; Pinto, F.; Molero, G.; Garatuza-Payan, J.; Reynolds, M.P.; Murchie, E.H.; Yepez, E.A. Night-time warming in the field reduces nocturnal stomatal conductance and grain yield but does not alter daytime physiological responses. New Phytol. 2023, 239, 1622–1636. [Google Scholar] [CrossRef]
- Sadok, W.; Lopez, J.R.; Smith, K.P. Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant Cell Environ. 2020, 44, 2102–2116. [Google Scholar] [CrossRef]
- Sadok, W.; Jagadish SV, K. The Hidden Costs of Nighttime Warming on Yields. Trends Plant Sci. 2020, 25, 644–651. [Google Scholar] [CrossRef]
- Smith, D.M.; Allen, S.J. Measurement of sap flow in plant stems. J. Exp. Bot. 1996, 47, 1833–1844. [Google Scholar] [CrossRef]
- Tarin, T.; Yepez, E.A.; Garatuza-Payan, J.; Rodriguez, J.C.; Méndez-Barroso, L.A.; Watts, C.J.; Vivoni, E.R. Evapotranspiration flux partitioning at a multi-species shrubland with stable isotopes of soil, plant, and atmosphere water pools. Atmósfera 2020, 33, 319–335. [Google Scholar] [CrossRef]
- Wilson, K.B.; Hanson, P.J.; Mulholland, P.J.; Baldocchi, D.D.; Wullschleger, S.D. A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 2001, 106, 153–168. [Google Scholar] [CrossRef]
- Williams, D.G.; Cable, W.; Hultine, K.; Hoedjes, J.C.B.; Yepez, E.A.; Simonneaux, V.; Er-Raki, S.; Boulet, G.; De Bruin, H.A.R.; Chehbouni, A.; et al. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteorol. 2004, 125, 241–258. [Google Scholar] [CrossRef]
- Poyatos, R.; Granda, V.; Molowny-Horas, R.; Mencuccini, M.; Steppe, K.; Martínez-Vilalta, J. SAPFLUXNET: Towards a global database of sap flow measurements. Tree Physiol. 2016, 36, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Skelton, R. Miniature External Sapflow Gauges and the Heat Ratio Method for Quantifying Plant Water Loss. Bio-Protocol 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Gerdes, G.; Allison, B.E.; Pereira, L.S. Overestimation of soybean crop transpiration by sap flow measurements under field conditions in Central Portugal. Irrig. Sci. 1994, 14, 135–139. [Google Scholar] [CrossRef]
- Vandegehuchte, M.W.; Steppe, K. Sap-flux density measurement methods: Working principles and applicability. Funct. Plant Biol. 2013, 40, 213–223. [Google Scholar] [CrossRef] [PubMed]
- González-Altozano, P.; Pavel, E.W.; Oncins, J.A.; Doltra, J.; Cohen, M.; Paço, T.; Massai, R.; Castel, J.R. Comparative assessment of five methods of determining sap flow in peach trees. Agric. Water Manag. 2008, 95, 503–515. [Google Scholar] [CrossRef]
- Miner, G.L.; Ham, J.M.; Kluitenberg, G.J. A heat-pulse method for measuring sap flow in corn and sunflower using 3D-printed sensor bodies and low-cost electronics. Agric. For. Meteorol. 2017, 246, 86–97. [Google Scholar] [CrossRef]
- Van de Put, H.; De Pauw, D.J.W.; Steppe, K. Evaluation and optimization of a 3D-printed external heat pulse sensor. Comput. Electron. Agric. 2020, 173, 105413. [Google Scholar] [CrossRef]
- Flo, V.; Martinez-Vilalta, J.; Steppe, K.; Schuldt, B.; Poyatos, R. A synthesis of bias and uncertainty in sap flow methods. Agric. For. Meteorol. 2019, 271, 362–374. [Google Scholar] [CrossRef]
- FAO. Crop Prospects and Food Situation. In Quarterly Global Report No. 2; FAO: Rome, Italy, 2021. [Google Scholar]
- Cai, G.; Vanderborght, J.; Langensiepen, M.; Schnepf, A.; Hüging, H.; Vereecken, H. Root growth, water uptake, and sap flow of winter wheat in response to different soil water availability. Hydrol. Earth Syst. Sci. 2018, 22, 2449–2470. [Google Scholar] [CrossRef]
- Langensiepen, M.; Kupisch, M.; Graf, A.; Schmidt, M.; Ewert, F. Improving the stem heat balance method for determining sap-flow in wheat. Agric. For. Meteorol. 2014, 186, 34–42. [Google Scholar] [CrossRef]
- Rafi, Z.; Merlin, O.; Le Dantec, V.; Khabba, S.; Mordelet, P.; Er-Raki, S.; Ferrer, F. Partitioning evapotranspiration of a drip-irrigated wheat crop: Inter-comparing eddy covariance-, sap flow-, lysimeter-and FAO-based methods. Agric. For. Meteorol. 2019, 265, 310–326. [Google Scholar] [CrossRef]
- Senock, R.S.; Ham, J.M.; Loughin, T.M.; Kimball, B.A.; Hunsaker, D.J.; Pinter, P.J.; Wall, G.W.; Garcia, R.L.; Lamorte, R.L. Sap flow in wheat under free-air CO2 enrichment. Plant Cell Environ. 1996, 19, 147–158. [Google Scholar] [CrossRef]
- O’Keefe, K.; Bell, D.M.; McCulloh, K.A.; Nippert, J.B. Bridging the Flux Gap: Sap Flow Measurements Reveal Species-Specific Patterns of Water Use in a Tallgrass Prairie. J. Geophys. Res. Biogeosciences 2020, 125, 1–17. [Google Scholar] [CrossRef]
- Cohen, Y.; Huck, M.G.; Hesketh, J.D.; Frederick, J.R. Sap flow in the stem of water stressed soybean and maize plants. Irrig. Sci. 1990, 11, 45–50. [Google Scholar] [CrossRef]
- Cohen, Y.; Li, Y. Validating sap flow measurement in field-grown sunflower and corn1. J. Exp. Bot. 1996, 47, 1699–1707. [Google Scholar] [CrossRef]
- Capurro, M.C.; Ham, J.M.; Kluitenberg, G.J.; Comas, L.; Andales, A.A. A novel sap flow system to measure maize transpiration using a heat pulse method. Agric. Water Manag. 2024, 301, 108963. [Google Scholar] [CrossRef]
- Steppe, K.; Vandegehuchte, M.W.; Tognetti, R.; Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [Google Scholar] [CrossRef]
- Burgess, S.S.O.; Adams, M.A.; Turner, N.C.; Ong, C.K. The redistribution of soil water by tree root systems. Oecologia 1998, 115, 306–311. [Google Scholar] [CrossRef]
- Clearwater, M.J.; Luo, Z.; Mazzeo, M.; Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009, 32, 1652–1663. [Google Scholar] [CrossRef] [PubMed]
- Beslity, J.; Shaw, S.B.; Drake, J.E.; Fridley, J.; Stella, J.C.; Stark, J.; Singh, K. A low cost, low power sap flux device for distributed and intensive monitoring of tree transpiration. HardwareX 2022, 12, e00351. [Google Scholar] [CrossRef] [PubMed]
- Sayre, K.D.; Rajaram, S.; Fischer, R.A. Yield potential progress in short bread wheats in northwest Mexico. Crop Sci. 1997, 37, 36–42. [Google Scholar] [CrossRef]
- Figueroa-López, P.; Félix-Fuentes, J.L.; Fuentes-Dávila, G.; Vallenzuela-Herrera, V.; Chávez-Villalba, G.; Mendoza-Lugo, J.A. CIRNO C-2008, nueva variedad de trigo cristalino con alto rendimiento potencial para el estado de Sonora. Rev. Mex. Cienc. Agrícolas 2010, 1, 745–749. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Vallejo-Gómez, D.; Osorio, M.; Hincapié, C.A. Smart Irrigation Systems in Agriculture: A Systematic Review. Agronomy 2023, 13, 342. [Google Scholar] [CrossRef]
- Wang, S.; Fan, J.; Ge, J.; Wang, Q. New design of external heat-ratio method for measuring low and reverse rates of sap flow in thin stems. For. Ecol. Manag. 2018, 419–420, 10–16. [Google Scholar] [CrossRef]
- Paul-Limoges, E.; Revill, A.; Maier, R.; Buchmann, N.; Damm, A. Insights for the partitioning of ecosystem evaporation and transpiration in short-statured croplands. J. Geophys. Res. Biogeosciences 2022, 127, e2021JG006760. [Google Scholar] [CrossRef]
Day | Heat Velocity | Water Loss |
---|---|---|
[cm h−1] | [gr h−1] | |
1 | 0.002767 | 1.250 |
2 | 0.002865 | 1.083 |
3 | 0.002637 | 0.833 |
4 | 0.002445 | 0.417 |
5 | 0.002454 | 0.833 |
6 | 0.002348 | 0.417 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra-Camara, O.; Méndez-Barroso, L.A.; Pinto, R.S.; Garatuza-Payán, J.; Yépez, E.A. Configuration of Low-Cost Miniature Heat Pulse Probes to Monitor Heat Velocity for Sap Flow Assessments in Wheat (Triticum durum L.). Grasses 2024, 3, 320-332. https://doi.org/10.3390/grasses3040024
Parra-Camara O, Méndez-Barroso LA, Pinto RS, Garatuza-Payán J, Yépez EA. Configuration of Low-Cost Miniature Heat Pulse Probes to Monitor Heat Velocity for Sap Flow Assessments in Wheat (Triticum durum L.). Grasses. 2024; 3(4):320-332. https://doi.org/10.3390/grasses3040024
Chicago/Turabian StyleParra-Camara, Oscar, Luis A. Méndez-Barroso, R. Suzuky Pinto, Jaime Garatuza-Payán, and Enrico A. Yépez. 2024. "Configuration of Low-Cost Miniature Heat Pulse Probes to Monitor Heat Velocity for Sap Flow Assessments in Wheat (Triticum durum L.)" Grasses 3, no. 4: 320-332. https://doi.org/10.3390/grasses3040024
APA StyleParra-Camara, O., Méndez-Barroso, L. A., Pinto, R. S., Garatuza-Payán, J., & Yépez, E. A. (2024). Configuration of Low-Cost Miniature Heat Pulse Probes to Monitor Heat Velocity for Sap Flow Assessments in Wheat (Triticum durum L.). Grasses, 3(4), 320-332. https://doi.org/10.3390/grasses3040024