Spatiotemporal Analysis of Land Use and Land Cover Dynamics of Dinderesso and Peni Forests in Burkina Faso
<p>Dinderesso and Peni classified forest location.</p> "> Figure 2
<p>Landsat land use land cover assessment and household heads survey flowchart.</p> "> Figure 3
<p>Land uses land cover classes in Dinderesso and Peni classified forests.</p> "> Figure 4
<p>Land use land cover map of Dinderesso classified forest in 1986, 2006, 2010, 2016, and 2022.</p> "> Figure 5
<p>Land use land cover map of Peni classified forest in 1986, 2006, 2010, 2016, and 2022.</p> "> Figure 6
<p>Land use land cover change in the classified forest of Dinderesso in 1986, 2006, 2010, 2016, and 2022.</p> "> Figure 7
<p>Land use land change in the classified forest of Peni in 1986, 2006, 2010, 2016, and 2022.</p> "> Figure 8
<p>Anthropogenic drivers of Dinderesso and Peni classified forests degradation and deforestation.</p> "> Figure 9
<p>Dinderesso classified forest degradation and deforestation drivers.</p> "> Figure 10
<p>Peni classified forest degradation and deforestation drivers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Landsat Data Collection
2.2.2. Digital Preprocessing of Landsat Images
2.2.3. Digital Image Processing
2.2.4. Testing of Classified Images
2.2.5. Evaluation of Land Use Land Cover Dynamics
2.2.6. Identification of Anthropogenic Factors of Degradation and Deforestation
Household Heads Sampling
Data Collection
Data Processing
3. Results
3.1. Land Use Land Cover Classes Identified
3.2. Classification Testing
3.3. Dynamics of Land Use in the Classified Forests of Dinderesso and Peni from 1986 to 2022
3.4. Anthropogenic Factors of Degradation and Deforestation of the Classified Forests of Dinderesso and Peni
3.4.1. Field Observation
3.4.2. Household Heads Profile
3.4.3. Dinderesso and Peni Classified Forests Neighboring Communities’ Perception of Degradation and Deforestation Drivers
4. Discussion
4.1. Peni Land Use Land Cover Classes and Landsat Images Analysis
4.2. Land Use and Land Cover Dynamic
4.3. Anthropogenic Drivers of Land Use Land Cover Degradation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thiombiano, A.; Kampmann, D. Atlas de la Biodiversité de l ’ Afrique de l ’ Ouest. Biodiversity Atlas of West Africa. Burkina Faso; BIOTA: Bonn, Germany, 2010; Volume 2, ISBN 9783981393309. [Google Scholar]
- FAO. Évaluation Des Ressources Forestières Mondiales: Forêt, Biodiversité Et Activité Humaine; FAO: Rome, Italy, 2020; ISBN 9789251307182. [Google Scholar]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Sánchez-Reyes, U.J.; Niño-Maldonado, S.; Barrientos-Lozano, L.; Treviño-Carreón, J. Assessment of land use-cover changes and successional stages of vegetation in the natural protected area altas cumbres, Northeastern Mexico, using landsat satellite imagery. Remote Sens. 2017, 9, 712. [Google Scholar] [CrossRef]
- Millogo, D.; Nikiema, A.; Koulibaly, B. Analyse de l ’ évolution de l ’ occupation des terres à partir de photographies aériennes de la localité de Loaga dans la province du Bam, Burkina Faso Analysis of the evolution of soil occupation using aerial photographs at Loaga area in Bam province. Int. J. Biol. Chem. Sci. 2017, 11, 2133–2143. [Google Scholar] [CrossRef]
- Dimobe, K.; Ouédraogo, A.; Soma, S.; Goetze, D.; Porembski, S.; Thiombiano, A. Identification of driving factors of land degradation and deforestation in the Wildlife Reserve of Bontioli (Burkina Faso, West Africa). Glob. Ecol. Conserv. 2015, 4, 559–571. [Google Scholar] [CrossRef]
- MECV. Situation des Forêts Classées du Burkina Faso et Plan de Rehabilitation; MECV: Ouagadougou, Burkina Faso, 2007. [Google Scholar]
- Djiguemde, F.; Ouoba, P.; Romaric, N.; Somda, I. Typologie des facteurs de dégradation de la Forêt Classée de Dindéresso (FCD), réserve naturelle péri urbaine au sud-ouest du Burkina Faso. Afrique Sci. 2023, 23, 119–129. [Google Scholar]
- Yaméogo, J.T.; Ouattara, R.Y.S.; Tankoano, B.; Hien, M.; Ouoba, P. Flore, structure et état sanitaire des peuplements ligneux des parcs agroforestiers des forêts de Dindéresso et de Kuinima à l’ouest du Burkina Faso. Eur. Sci. J. ESJ 2020, 16, 48–70. [Google Scholar] [CrossRef]
- Belem, M.; Zoungrana, M.; Nabaloum, M. Les effets combinés du climat et des pressions anthropiques sur la forêt classée de Toéssin, Burkina Faso. Int. J. Biol. Chem. Sci. 2019, 12, 2186–2201. [Google Scholar] [CrossRef]
- Savadogo, O. Fourniture des Services Écosystémiques par les Réserves Totale et Partielle de Faune de Bontioli dans le Sud-Ouest du Burkina Faso: Perception Paysanne et Contribution à la Résilience des Populations Riveraines Dans un Contexte de Changement Climatique; Université Senghor: Alexandrie, Egypte, 2021; p. 68. [Google Scholar]
- USGS Earthexplorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 16 November 2023).
- Tankoano, B.; Hien, M.; Dibi, N.H.; Sanon, Z.; Yameogo, J.T.; Somda, I. Dynamique spatio-temporelle des savanes boisées de la forêt classée de Tiogo au Burkina Faso. Int. J. Biol. Chem. Sci. 2015, 9, 1983. [Google Scholar] [CrossRef]
- IGB. Available online: https://www.igb.bf/ (accessed on 22 November 2022).
- Tempa, K.; Aryal, K.R. Semi-automatic classification for rapid delineation of the geohazard-prone areas using Sentinel-2 satellite imagery. SN Appl. Sci. 2022, 141, 15. [Google Scholar] [CrossRef]
- Denis, A. Travaux Pratiques de Télédétection Spatiale II Avec données et logiciels; ULiège—Université de Liège [Faculté des Sciences]: Liège, Belgium, 2020; p. 429. Available online: https://hdl.handle.net/2268/240835 (accessed on 10 June 2022).
- Ghosh, A.; Sharma, R.; Joshi, P.K. Random forest classification of urban landscape using Landsat archive and ancillary data: Combining seasonal maps with decision level fusion. Appl. Geogr. 2014, 48, 31–41. [Google Scholar] [CrossRef]
- Traoré, F.; Palé, S.; Zaré, A.; Traoré, M.K.; Ouédraogo, B.; Bonkoungou, J. A Comparative Analysis of Random Forest and Support Vector Machines for Classifying Irrigated Cropping Areas in The Upper-Comoé Basin, Burkina Faso. Indian J. Sci. Technol. 2024, 17, 713–722. [Google Scholar] [CrossRef]
- Thanh Tam, N.; Thanh Dat, H.; Minh Tam, P.; Tuyet Trinh, V.; Thanh Hung, N.; Quyet-Thang, H.; Jun, J. Monitoring agriculture areas with satellite images and deep learning. Appl. Soft Comput. J. 2020, 95, 16. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Card, D.H. Using Known Map Category Marginal Frequencies to Improve Estimates of Thematic Map Accuracy. Photogramm. Eng. Remote Sensing 1982, 48, 431–439. [Google Scholar]
- Obodai, J.; Adjei, K.A.; Odai, S.N.; Lumor, M. Land use/land cover dynamics using landsat data in a gold mining basin-the Ankobra, Ghana. Remote Sens. Appl. Soc. Environ. 2019, 13, 247–256. [Google Scholar] [CrossRef]
- Long, H.; Tang, G.; Li, X.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef]
- INSD. Fichier des Localités du 5 e RGPH; INSD: Ouagadougou, Burkina Faso, 2022; p. 400. [Google Scholar]
- SE/CCNUCC. Niveau d ’ Émissions de Référence pour les Forêts du Burkina Faso; SE/CCNUCC: Ouagadougou, Burkina Faso, 2020; p. 85. Available online: https://redd.unfccc.int/media/ (accessed on 19 September 2024).
- Mohd Hasmadi, I.; Pakhriazad, H.Z.; Shahrin, M.F. Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Malays. J. Soc. Sp. 2009, 5, 1–10. [Google Scholar]
- Tankoano, B.; Sanon, Z.; Hien, M.; Dibi, N.H.; Yameogo, J.T.; Somda, I. Anthropogenic pressure and vegetation dynamics in the Classified Forest of Tiogo in Burkina Faso: Contribution of remote sensing|Pression anthropique et dynamique végétale dans la Forêt Classée de Tiogo au Burkina Faso: Apport de la Télédétection. Tropicultura 2016, 34, 193–207. [Google Scholar]
- Dash, P.; Sanders, S.L.; Parajuli, P.; Ouyang, Y. Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data in an Agricultural Watershed. Remote Sens. 2023, 15, 4020. [Google Scholar] [CrossRef]
- Saint, K.; Aka, R.; Da Dibi, H.N.; Koffi, J.N. Étude comparative de Sentinel-2 et Landsat-8 Oli à l’ évaluation de l’occupation du sol du site R amsar d’Azagny, Sud de la Côte d’Ivoire Résumé. Afrique Sci. 2022, 20, 48–63. [Google Scholar]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. Mapping per-pixel predicted accuracy of classified remote sensing images. Remote Sens. Environ. 2017, 191, 156–167. [Google Scholar] [CrossRef]
- Tankoano, B.; Hien, M.; Dibi, N.; Sanon, Z.; L Akpa, Y.; Sokeng, V.; Somda, I. Cartographie de la dynamique du couvert végétal du Parc National des Deux Balé à l’Ouest du Burkina Faso [Mapping land cover dynamics of Deux Balé National Park, Western Burkina Faso]. Int. J. Innov. Appl. Stud. 2016, 16, 837–846. [Google Scholar]
- Sanon, Z.; Hien, M.; Tankoano, B.; Karlson, M.; Somda, I. Impact des villages et du réseau routier sur la structure spatiale de la forêt classée de Koulbi (Sud-Ouest du Burkina Faso). Sci. Tech. Rev. Burkinabè la Rech. Sci. Nat. Appl. Sci. Tech. 2019, 38, 59–72. [Google Scholar]
- N’Guessan, A.E.; N’dja, J.K.; Yao, O.N.; Amani, B.H.K.; Gouli, R.G.Z.; Piponiot, C.; Zo-Bi, I.C.; Hérault, B. Drivers of biomass recovery in a secondary forested landscape of West Africa. For. Ecol. Manag. 2019, 433, 325–331. [Google Scholar] [CrossRef]
- Boukeng, D.; Elvire, J. Dynamique et Services des Écosystèmes Agroforestiers Autour d’une Aire Protégée du Cameroun. Ph.D. Thesis, Univeriste LAVAL, Quebec, QC, Canada, 2021; p. 132. [Google Scholar]
- Atakpama, W.; Joseph, K.; Klevor, A.; Kanda, M.; Dourma, M.; Batawila, K.; Akpagana, K.; Kanda, M.; Kanda, M.; Batawila, K.; et al. Wildfires degrade and deforest Fazao-Malfakassa National Park ( FMNP ) in Togo. Afr. J. Land Policy Geospat. Sci. 2024, 7, 2657–2664. [Google Scholar] [CrossRef]
- Sanou, L. Perceptions locales des perturbations écologiques sur la dynamique de la végétation de la réserve de biosphère transfrontalière Parc National du W, Afrique de l’Ouest. Rev. Ecosystèmes Paysages 2023, 3, 1–14. [Google Scholar] [CrossRef]
- Tindano, E.; Ganame, M.; Bongoungou, S.; Bayen, P. Effect of artisanal gold mining on woody plant diversity in Western Burkina Faso. Sci. Afr. 2024, 24, 1–12. [Google Scholar] [CrossRef]
- Phiri, D.; Mwitwa, J.; Ng’andwe, P.; Kanja, K.; Munyaka, J.; Chileshe, F.; Hamazakaza, P.; Kapembwa, S.; Kwenye, J.M. Agricultural expansion into forest reserves in Zambia: A remote sensing approach. Geocarto Int. 2023, 38, 221320. [Google Scholar] [CrossRef]
- Miyamoto, M. Poverty reduction saves forests sustainably: Lessons for deforestation policies. World Dev. 2020, 127, 104746. [Google Scholar] [CrossRef]
- Gaisberger, H.; Kindt, R.; Loo, J.; Schmidt, M.; Bognounou, F.; Da, S.S.; Diallo, O.B.; Ganaba, S.; Gnoumou, A.; Lompo, D.; et al. Spatially explicit multi-threat assessment of food tree species in Burkina Faso: A fine-scale approach. PLoS ONE 2017, 12, e0184457. [Google Scholar] [CrossRef]
- Savadogo, S.; Ouoba, P.A.; Da, D.E.C. Extraction des PFNL et Menace sur les especes pourvoyeuses au Burkina Faso: Cas de Kokologho et Tenado dans la region du Centre-Ouest. Rev. Ivoirienne Sci. Technol. 2019, 33, 240–258. [Google Scholar]
- Kabore, A.M.; Somda, J.; Savadogo, M.; Nianogo, A.J. Bois-Energie au Burkina Faso: Consolidation des Moyens D’existences Durable (2006–2009); IUCN: Ouagadougou, Burkina Faso, 2009. [Google Scholar]
- Mundler, P.; Audras, A.; Ler, I.L. Inra Sfer Cirad. 2010, pp. 1–19. Available online: https://agritrop.cirad.fr/554636/1/document_554636.pdf (accessed on 19 September 2024).
- Sama, A.; Ramdé, Z.; Ouédraogo, P.C.; Sikuzani, Y.U.; Dipama, J.; Bogaert, J. Pression anthropique et dynamique de l ’ occupation du sol autour du corridor n ° 1 du complexe écologique Pô-Nazinga- Sissili au Burkina Faso. Tropicultura 2023, 41, 2200. [Google Scholar] [CrossRef]
- Crovo, O.; Aburto, F.; Montecino, F.; Rodríguez, R. Effects of livestock grazing on soil health and recovery of a degraded Andean Araucaria forest. L. Degrad. Dev. 2021, 32, 4907–4919. [Google Scholar] [CrossRef]
- Papoutsa, C.; Kouhartsiouk, D.; Themistocleous, K.; Christoforou, M.; Hadjimitsis, D.G. Monitoring of land degradation from overgrazing using space-borne radar and optical imagery: A case study in Randi Forest, Cyprus. In Proceedings of the SPIE, Edinburg, UK, 26–29 September 2016; Volume 10005, p. 10. [Google Scholar] [CrossRef]
- MEEVCC. Plan D’Investissement Forestier Version Préliminaire: 15 Mai 2011 Plan d’Investissement Forestier (PIF/Burkina Faso); MEEVCC: Ouagadougou, Burkina Faso, 2020. [Google Scholar]
- Ministery of Environment. Faso Volume 1: Les Facteurs de Deforestation et de Degradation des Forets au Burkina Faso. Rapport d’Etude; Volume 1: Tendances Actuelles; Ministery of Environment: Ouagadougou, Burkina Faso, 2019; Volume 1.
- Alphonse Mare David, M.; Jean-Louis, D.; Felicien, T. Analyse de la Dynamique de la Population de Detarium Microcarpum Guill et Perr. au Burkina Faso. Master’s Thesis, Universite de Liege, Liege, Belgium, 2019; p. 65. [Google Scholar]
Forest | Landsat N | Date Acquired | Sensor_ID | Cloud Cover | Path | Row |
---|---|---|---|---|---|---|
Dinderesso | 5 | 16 November 1986 | TM | 0 | 197 | 52 |
5 | 7 November 2006 | TM | 0 | 197 | 52 | |
5 | 18 November 2010 | TM | 0 | 197 | 52 | |
8 | 17 October 2016 | OLI_TIRS | 0.17 | 197 | 52 | |
8 | 18 October 2022 | OLI_TIRS | 0 | 197 | 52 | |
Peni | 5 | 16 November 1986 | TM | 0 | 197 | 52 |
5 | 7 November 2006 | TM | 0 | 197 | 52 | |
5 | 18 November 2010 | TM | 2 | 197 | 52 | |
8 | 17 October 2016 | OLI_TIRS | 0.17 | 197 | 52 | |
8 | 18 October 2022 | OLI_TIRS | 0 | 197 | 52 |
Forest | Community | Household Heads Number |
---|---|---|
Dinderesso | Banakeledaga | 136 |
Dinderesso | 41 | |
Nasso | 113 | |
Ouolonkoto | 133 | |
Peni | Peni | 190 |
Sokouranie | 30 | |
Taga | 37 | |
Gnafongo | 170 | |
Total | 850 |
Forest | Year | Accuracy | Recall | F1-Score | Kappa |
---|---|---|---|---|---|
Dinderesso | 1986 | 0.97 | 0.96 | 0.96 | 0.92 |
2006 | 0.98 | 0.97 | 0.97 | 0.9 | |
2010 | 0.97 | 0.96 | 0.97 | 0.92 | |
2016 | 0.95 | 0.95 | 0.95 | 0.91 | |
2022 | 0.96 | 0.96 | 0.96 | 0.92 | |
Peni | 1986 | 0.96 | 0.99 | 0.98 | 0.97 |
2006 | 0.99 | 0.98 | 0.99 | 0.99 | |
2010 | 0.97 | 0.97 | 0.98 | 0.92 | |
2016 | 0.99 | 0.99 | 0.99 | 0.97 | |
2022 | 0.98 | 0.98 | 0.97 | 0.96 |
1986/Dinderesso classified forest | |||||||||
WB/WA | GF | CF | WS/TS | SS | AP | BA/BS | Total | UA (%) | |
WB/WA | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 100.00 ± 0.00 |
GF | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 95.52 ± 4.99 |
CF | 0.00 | 0.00 | 0.41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.42 | 99.12 ± 1.00 |
WS/TS | 0.00 | 0.00 | 0.00 | 0.26 | 0.00 | 0.01 | 0.00 | 0.27 | 96.34 ± 4.09 |
SS | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.06 | 100.00 ± 0.00 |
AP | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.14 | 0.01 | 0.18 | 80.00 ± 10.67 |
BA/BS | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 ± 0.00 |
Total | 0.06 | 0.02 | 0.42 | 0.29 | 0.06 | 0.15 | 0.01 | 1.00 | |
PA (%) | 97.93 ± 3.98 | 97.63 ± 13.38 | 99.82 ± 0.19 | 89.77 ± 5.55 | 97.89 ± 4.04 | 93.62 ± 6.73 | 39.75 ± 32.88 | ||
Adjusted area (ha) | 524.69 ± 21 | 147.66 ± 22 | 3662.42 ± 38 | 2526.02 ± 183 | 516.86 ± 21 | 1349.64 ± 194 | 95.32 ± 79 | ||
OA (%) | 95 ± 2.24 | ||||||||
2022/Dinderesso classified forest | |||||||||
WB/WA | GF | CF | WS/TS | SS | AP | BA/BS | Total | UA (%) | |
WB/WA | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 100.00 ± 0.00 |
GF | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 98.46 ± 3.02 |
CF | 0.01 | 0.01 | 0.33 | 0.00 | 0.00 | 0.03 | 0.00 | 0.38 | 87.93 ± 8.46 |
WS/TS | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.01 | 0.00 | 0.14 | 86.89 ± 8.54 |
SS | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.14 | 100.00 ± 0.00 |
AP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.29 | 98.86 ± 2.23 |
BA/BS | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 95.89 ± 3.48 |
Total | 0.04 | 0.03 | 0.33 | 0.12 | 0.14 | 0.32 | 0.01 | 1.00 | |
PA (%) | 70.77 ± 28.42 | 76.07 ± 35.68 | 99.90 ± 0.19 | 97.20 ± 5.09 | 100.00 ± 0.00 | 87.73 ± 7.34 | 46.41 ± 34.20 | ||
Adjusted area (ha) | 395.25 ± 159 | 241.37 ± 113 | 2949.78 ± 283 | 1078.59 ± 117 | 1234.71 ± 0.00 | 2850.09 ± 245 | 73.82 ± 54 | ||
OA (%) | 93.25 ± 3.48 |
1986/Peni classified forest | ||||||||
WB/WA | GF | WS/TS | SS | AP | BA/BS | Total | UA (%) | |
WB/WA | 0.27 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.29 | 91.30 ± 11.77 |
GF | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 100.00 ± 0.00 |
WS/TS | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | 0.00 | 0.23 | 98.53 ± 2.88 |
SS | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 97.18 ± 3.88 |
AP | 0.00 | 0.00 | 0.00 | 0.00 | 0.43 | 0.00 | 0.43 | 100.00 ± 0.00 |
BA/BS | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 100.00 ± 0.00 |
Total | 0.27 | 0.03 | 0.23 | 0.00 | 0.46 | 0.01 | 1.00 | |
PA (%) | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.98 ± 0.02 | 100.00 ± 0.00 | 93.76 ± 7.11 | 100.00 ± 0.00 | ||
Adjusted area (ha) | 294.26 ± 38 | 34.92 ± 0.00 | 252.33 ± 7 | 1.49 ± 0.00 | 509.78 ± 39 | 11.43 ±0.00 | ||
OA (%) | 97.12 ± 3.50 | |||||||
2022/Peni classified forest | ||||||||
WB/WA | GF | WS/TS | SS | AP | BA/BS | Total | UA (%) | |
WB/WA | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 90.00 ± 13.49 |
GF | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 94.74 ± 7.20 |
WS/TS | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.00 | 0.13 | 100.00 ± 0.00 |
SS | 0.00 | 0.00 | 0.00 | 0.17 | 0.00 | 0.01 | 0.18 | 97.01 ± 4.11 |
AP | 0.00 | 0.00 | 0.00 | 0.00 | 0.62 | 0.00 | 0.62 | 100.00 ± 0.00 |
BA/BS | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 99.23 ± 1.51 |
Total | 0.06 | 0.01 | 0.13 | 0.18 | 0.62 | 0.01 | 1.00 | |
PA (%) | 100.00 ± 0.00 | 73.89 ±37.84 | 99.62 ± 0.51 | 98.21 ± 3.44 | 100.00 ± 0.00 | 14.36 ± 16.92 | ||
Adjusted area (ha) | 62.37 ± 9 | 13.27 ± 7 | 144.27 ± 1 | 193.81 ± 11 | 683.65 ± 0.00 | 6.84 ± 8 | ||
OA (%) | 98.79 ± 1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millogo, A.M.D.; Tankoano, B.; Neya, O.; Folega, F.; Wala, K.; Hackman, K.O.; Namoano, B.; Batawila, K. Spatiotemporal Analysis of Land Use and Land Cover Dynamics of Dinderesso and Peni Forests in Burkina Faso. Geomatics 2024, 4, 362-381. https://doi.org/10.3390/geomatics4040019
Millogo AMD, Tankoano B, Neya O, Folega F, Wala K, Hackman KO, Namoano B, Batawila K. Spatiotemporal Analysis of Land Use and Land Cover Dynamics of Dinderesso and Peni Forests in Burkina Faso. Geomatics. 2024; 4(4):362-381. https://doi.org/10.3390/geomatics4040019
Chicago/Turabian StyleMillogo, Alphonse Maré David, Boalidioa Tankoano, Oblé Neya, Fousseni Folega, Kperkouma Wala, Kwame Oppong Hackman, Bernadin Namoano, and Komlan Batawila. 2024. "Spatiotemporal Analysis of Land Use and Land Cover Dynamics of Dinderesso and Peni Forests in Burkina Faso" Geomatics 4, no. 4: 362-381. https://doi.org/10.3390/geomatics4040019
APA StyleMillogo, A. M. D., Tankoano, B., Neya, O., Folega, F., Wala, K., Hackman, K. O., Namoano, B., & Batawila, K. (2024). Spatiotemporal Analysis of Land Use and Land Cover Dynamics of Dinderesso and Peni Forests in Burkina Faso. Geomatics, 4(4), 362-381. https://doi.org/10.3390/geomatics4040019