Time Series Foundation Models and Deep Learning Architectures for Earthquake Temporal and Spatial Nowcasting
<p>Illustration of the construction of a nowcast model for California. The nowcast is a 2-parameter filter on the small earthquake seismicity [<a href="#B42-geohazards-05-00059" class="html-bibr">42</a>,<a href="#B43-geohazards-05-00059" class="html-bibr">43</a>]. (<b>a</b>) Seismicity in the Los Angeles region since 1960, M > 3.29. (<b>b</b>) Monthly rate of small earthquakes as cyan vertical bars. The blue curve is the 36-month exponential moving average (EMA). (<b>c</b>) Mean rate of small earthquakes since 1970. (<b>d</b>) Nowcast curve that is the result of applying the optimized EMA and corrections for the time-varying small earthquake rate to the small earthquake seismicity. (<b>e</b>) Optimized receiver operating characteristic (ROC) curve (red line) used in the machine learning algorithm. Skill is the area under the ROC curve and is used in the optimization. Skill trade-off diagram shows the range of models used in the optimization.</p> "> Figure 2
<p>Image showing the application of the trained QuakeGPT transformer to an independent, scaled nowcast validation curve (green shading), followed by prediction of future values beyond the end of the nowcast curve (magenta shading). In this model, 36 previous values are used to predict the next value. Dots show the predictions and the solid line shows the nowcast curve whose values are to be predicted. Green dots show the predictions of the transformer up to the last 37 values. The 36 blue dots are predictions that were made and then fed back into the transformer to predict the final point (red dot). In this model, 50 members of an ensemble of runs were used to make the predictions. The dots represent the mean predictions. Brown areas represent the 1-sigma standard deviations to the mean values. In this model, 2021 years of simulation data were used to train the model.</p> "> Figure 3
<p>Distribution of earthquake epicenters in Southern California (32° N to 36° N, −120° to −114°) from USGS data (1986–2024). The scatter plot shows the spatial density of seismic events used to analyze and optimize spatial bins for earthquake nowcasting.</p> "> Figure 4
<p>The 500 most active and vulnerable spatial bins, marked in blue, selected for analysis out of the total 2400, based on the frequency of earthquakes from 1986 to 2024. This selection focuses on high-risk areas.</p> "> Figure 5
<p>Six time series from randomly selected spatial bins, highlighting earthquakes of magnitude greater than 5.</p> "> Figure 6
<p>The final graph structure representing the 500 most active bins, created using an epsilon of 0.15 degrees. Initially forming a multi-component graph, components are linked to ensure full connectivity.</p> "> Figure 7
<p>Released energy time series plots for six randomly selected spatial bins, comparing model predictions (GNNCoder one-layer, DilatedRNN, TiDE, iTransformer-M4) against actual observed seismic activities. The brown line represents our GNN approach, which shows a closer match with the actual time series, capturing crucial upward slopes that may signal an impending earthquake. The green and red lines occasionally miss these trends, making more errors where even slight changes in seismic activity are critical. The purple line from the iTransformer-M4 model fails to accurately capture the time series values and exhibits excessive fluctuations.</p> "> Figure 8
<p>This plot illustrates the spatial bins overlaid on the fault lines to assess the extent to which the fault lines are captured by the bins (graph nodes). It highlights the limitations of the current graph, where some critical fault lines fall outside the spatial bins, impacting the performance of deeper GNN models like the GNNCoder 3-layer model.</p> ">
Abstract
:1. Introduction
2. Current State-of-the-Art
3. Data
3.1. Graph Structure for GNNCoder
3.2. Pre-Training Datasets for Transformer Models
3.2.1. TrafficL Dataset
3.2.2. Weather Dataset
3.2.3. M4 Dataset
4. Models Description
4.1. Pre-Trained Transformer Models
4.2. Graph Neural Networks Models
4.3. Memory-Based Models
4.4. Convolutional and MLP-Based Models
4.5. Multi Foundation Quake
4.6. Model Training and Implementation
5. Models Evaluation and Comparison
5.1. Evaluation Metrics
5.2. Results and Discussion
5.2.1. Earthquake Time Series Analysis
5.2.2. Multi Foundation Quake Analysis
5.2.3. Spatial Analysis
5.2.4. Feature Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jordan, T.H.; Chen, Y.T.; Gasparini, P.; Madariaga, R.; Main, I.; Marzocchi, W.; Papadopoulos, G.; Sobolev, G.; Yamaoka, K.; Zschau, J. Operational earthquake forecasting: State of knowledge and guidelines for utilization. Ann. Geophys. 2011, 54, 315–391. [Google Scholar]
- Fox, G.C.; Rundle, J.B.; Donnellan, A.; Feng, B. Earthquake Nowcasting with Deep Learning. GeoHazards 2022, 3, 199–226. [Google Scholar] [CrossRef]
- Rundle, J.B.; Donnellan, A.; Fox, G.; Crutchfield, J.P.; Granat, R. Nowcasting Earthquakes: Imaging the Earthquake Cycle in California With Machine Learning. Earth Space Sci. 2021, 8, e2021EA001757. [Google Scholar] [CrossRef]
- de Arcangelis, L.; Godano, C.; Grasso, J.R.; Lippiello, E. Statistical physics approach to earthquake occurrence and forecasting. Phys. Rep. 2016, 628, 1–91. [Google Scholar] [CrossRef]
- Chuang, R.Y.; Wu, B.S.; Liu, H.C.; Huang, H.H.; Lu, C.H. Development of a statistics-based nowcasting model for earthquake-triggered landslides in Taiwan. Eng. Geol. 2021, 289, 106177. [Google Scholar] [CrossRef]
- Rundle, J.B.; Donnellan, A. Nowcasting Earthquakes in Southern California With Machine Learning: Bursts, Swarms, and Aftershocks May Be Related to Levels of Regional Tectonic Stress. Earth Space Sci. 2020, 7, e2020EA001097. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Ellsworth, W.L.; Zhu, W.; Chuang, L.Y.; Beroza, G.C. Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun. 2020, 11, 3952. [Google Scholar] [CrossRef]
- Rundle, J.B.; Donnellan, A.; Fox, G.; Crutchfield, J.P. Nowcasting earthquakes by visualizing the earthquake cycle with machine learning: A comparison of two methods. Surv. Geophys. 2022, 43, 483–501. [Google Scholar] [CrossRef]
- Perol, T.; Gharbi, M.; Denolle, M. Convolutional neural network for earthquake detection and location. Sci. Adv. 2018, 4, e1700578. [Google Scholar] [CrossRef]
- Harirchian, E.; Lahmer, T.; Rasulzade, S. Earthquake hazard safety assessment of existing buildings using optimized multi-layer perceptron neural network. Energies 2020, 13, 2060. [Google Scholar] [CrossRef]
- Jafari, A.; Haratizadeh, S. GCNET: Graph-based prediction of stock price movement using graph convolutional network. Eng. Appl. Artif. Intell. 2022, 116, 105452. [Google Scholar] [CrossRef]
- Jafari, A.; Haratizadeh, S. NETpred: Network-based modeling and prediction of multiple connected market indices. arXiv 2022, arXiv:2212.05916. [Google Scholar]
- Shariatmadari, A.H.; Guo, S.; Srinivasan, S.; Zhang, A. Harnessing the Power of Knowledge Graphs to Enhance LLM Explainability in the BioMedical Domain. Proceedings of the LLMs4Bio Workshop at AAAI 2024. 2024, pp. 1–8. Available online: https://llms4science-community.github.io/aaai2024/papers/LLMs4Bio24_paper_10.pdf (accessed on 10 May 2024).
- Zhang, X.; Reichard-Flynn, W.; Zhang, M.; Hirn, M.; Lin, Y. Spatiotemporal Graph Convolutional Networks for Earthquake Source Characterization. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024401. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.A.; Ji, Y.; Wang, Y.; Akhter, M.P.; Yaqub, M. An Early Warning System for Earthquake Prediction from Seismic Data Using Batch Normalized Graph Convolutional Neural Network with Attention Mechanism (BNGCNNATT). Sensors 2022, 22, 6482. [Google Scholar] [CrossRef] [PubMed]
- McBrearty, I.W.; Beroza, G.C. Earthquake location and magnitude estimation with graph neural networks. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 3858–3862. [Google Scholar]
- McBrearty, I.W.; Beroza, G.C. Earthquake phase association with graph neural networks. Bull. Seismol. Soc. Am. 2023, 113, 524–547. [Google Scholar] [CrossRef]
- van den Ende, M.P.A.; Ampuero, J.P. Automated Seismic Source Characterization Using Deep Graph Neural Networks. Geophys. Res. Lett. 2020, 47, e2020GL088690. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.; et al. Gpt-4 technical report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Sadhukhan, B.; Chakraborty, S.; Mukherjee, S. Predicting the magnitude of an impending earthquake using deep learning techniques. Earth Sci. Inform. 2023, 16, 803–823. [Google Scholar] [CrossRef]
- Saad, O.M.; Chen, Y.; Savvaidis, A.; Fomel, S.; Chen, Y. Real-time earthquake detection and magnitude estimation using vision transformer. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023657. [Google Scholar] [CrossRef]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67. [Google Scholar]
- ScienceFMHub Portal for Science Foundation Model Community. 2023. Available online: http://sciencefmhub.org (accessed on 3 November 2023).
- Liu, Y.; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; Long, M. itransformer: Inverted transformers are effective for time series forecasting. arXiv 2023, arXiv:2310.06625. [Google Scholar]
- Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. arXiv 2023, arXiv:2211.14730. [Google Scholar]
- Garza, A.; Mergenthaler-Canseco, M. TimeGPT-1. arXiv 2023, arXiv:2310.03589. [Google Scholar]
- Jin, M.; Wang, S.; Ma, L.; Chu, Z.; Zhang, J.Y.; Shi, X.; Chen, P.Y.; Liang, Y.; Li, Y.F.; Pan, S.; et al. Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. arXiv 2023, arXiv:2310.01728. [Google Scholar]
- Ansari, A.F.; Stella, L.; Turkmen, C.; Zhang, X.; Mercado, P.; Shen, H.; Shchur, O.; Rangapuram, S.S.; Arango, S.P.; Kapoor, S.; et al. Chronos: Learning the language of time series. arXiv 2024, arXiv:2403.07815. [Google Scholar]
- Chen, S.A.; Li, C.L.; Yoder, N.; Arik, S.O.; Pfister, T. Tsmixer: An all-mlp architecture for time series forecasting. arXiv 2023, arXiv:2303.06053. [Google Scholar]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430. [Google Scholar]
- Chang, S.; Zhang, Y.; Han, W.; Yu, M.; Guo, X.; Tan, W.; Cui, X.; Witbrock, M.; Hasegawa-Johnson, M.A.; Huang, T.S. Dilated recurrent neural networks. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; Long, M. TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis. arXiv 2023, arXiv:2210.02186. [Google Scholar]
- Das, A.; Kong, W.; Leach, A.; Mathur, S.; Sen, R.; Yu, R. Long-term forecasting with tide: Time-series dense encoder. arXiv 2023, arXiv:2304.08424. [Google Scholar]
- Holschneider, M.; Zöller, G.; Clements, R.; Schorlemmer, D. Can we test for the maximum possible earthquake magnitude? J. Geophys. Res. Solid Earth 2014, 119, 2019–2028. [Google Scholar] [CrossRef]
- Zhuang, J. Long-term earthquake forecasts based on the epidemic-type aftershock sequence (ETAS) model for short-term clustering. Res. Geophys. 2012, 2, e8. [Google Scholar] [CrossRef]
- Field, E.H.; Milner, K.R.; Hardebeck, J.L.; Page, M.T.; van der Elst, N.; Jordan, T.H.; Michael, A.J.; Shaw, B.E.; Werner, M.J. A Spatiotemporal Clustering Model for the Third Uniform California Earthquake Rupture Forecast (UCERF3-ETAS): Toward an Operational Earthquake Forecast. Bull. Seismol. Soc. Am. 2017, 107, 1049–1081. [Google Scholar] [CrossRef]
- Rundle, J.B.; Baughman, I.; Zhang, T. Nowcasting ETAS Earthquakes: Information Entropy of Earthquake Catalogs. arXiv 2023, arXiv:2310.14083. [Google Scholar] [CrossRef]
- Rundle, J.B.; Fox, G.; Donnellan, A.; Ludwig, L.G. Nowcasting earthquakes with QuakeGPT: Methods and first results. arXiv 2024, arXiv:2406.09471. [Google Scholar]
- Rundle, J.B.; Yazbeck, J.; Donnellan, A.; Fox, G.; Ludwig, L.G.; Heflin, M.; Crutchfield, J. Optimizing Earthquake Nowcasting With Machine Learning: The Role of Strain Hardening in the Earthquake Cycle. Earth Space Sci. 2022, 9, e2022EA002343. [Google Scholar] [CrossRef]
- Rundle, J.B.; Baughman, I.; Zhang, T. Nowcasting earthquakes with stochastic simulations: Information entropy of earthquake catalogs. Earth Space Sci. 2024, 11, e2023EA003367. [Google Scholar] [CrossRef]
- of United States Geological Survey, E.H.P. USGS Search Earthquake Catalog Home Page. Available online: https://earthquake.usgs.gov/earthquakes/search/ (accessed on 1 May 2024).
- Field, E.H. Overview of the Working Group for the Development of Regional Earthquake Likelihood Models (RELM). Seismol. Res. Lett. 2007, 78, 7–16. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Hanks, T.C.; Kanamori, H. A moment magnitude scale. J. Geophys. Res. Solid Earth 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
- Eppstein, D.; Paterson, M.S.; Yao, F.F. On nearest-neighbor graphs. Discret. Comput. Geom. 1997, 17, 263–282. [Google Scholar] [CrossRef]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI Blog 2019, 1, 9. [Google Scholar]
- Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling long-and short-term temporal patterns with deep neural networks. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 95–104. [Google Scholar]
- Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 2020, 36, 54–74. [Google Scholar] [CrossRef]
- Haugsdal, E.; Aune, E.; Ruocco, M. Persistence initialization: A novel adaptation of the transformer architecture for time series forecasting. Appl. Intell. 2023, 53, 26781–26796. [Google Scholar] [CrossRef]
- Oreshkin, B.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. arXiv 2019, arXiv:1905.10437. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; NIPS’17. pp. 5998–6008. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Wang, X.; Ji, H.; Shi, C.; Wang, B.; Wang, P.; Cui, P.; Yu, P.S. Heterogeneous graph attention network. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2022–2032. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; JMLR Workshop and Conference Proceedings. pp. 249–256. [Google Scholar]
- Olivares, K.G.; Challú, C.; Garza, F.; Canseco, M.M.; Dubrawski, A. NeuralForecast: User Friendly State-of-the-Art Neural Forecasting Models; PyCon: Salt Lake City, UT, USA, 2022. [Google Scholar]
- Grattarola, D.; Alippi, C. Graph neural networks in TensorFlow and keras with spektral [application notes]. IEEE Comput. Intell. Mag. 2021, 16, 99–106. [Google Scholar] [CrossRef]
- MLCommons. MLCommons Homepage: Machine Learning Innovation to Benefit Everyone. Available online: https://mlcommons.org/en/ (accessed on 7 December 2021).
- von Laszewski, G.; Fleischer, J.P.; Knuuti, R.; Fox, G.C.; Kolessar, J.; Butler, T.S.; Fox, J. Opportunities for enhancing MLCommons efforts while leveraging insights from educational MLCommons earthquake benchmarks efforts. Front. High Perform. Comput. 2023, 1. Available online: https://par.nsf.gov/biblio/10473591 (accessed on 23 October 2023). [CrossRef]
- Thiyagalingam, J.; von Laszewski, G.; Yin, J.; Emani, M.; Papay, J.; Barrett, G.; Luszczek, P.; Tsaris, A.; Kirkpatrick, C.; Wang, F.; et al. AI Benchmarking for Science: Efforts from the MLCommons Science Working Group. In Proceedings of the HPC on Heterogeneous Hardware (H3) Workshop at ISC Conference, Hamburg, Germany, 25 May 2023. [Google Scholar]
- Group, M.S.W. MLCommons Science Working Group Invites Researchers to Run New Benchmarks. Available online: https://www.hpcwire.com/off-the-wire/mlcommons-science-working-group-invites-researchers-to-run-new-benchmarks/ (accessed on 4 September 2023).
- MLCommons Science Working Group. MLCommons Science Working Group GitHub for Benchmarks. 2022. Available online: https://github.com/mlcommons/science (accessed on 27 December 2012).
- Nossent, J.; Bauwens, W. Application of a normalized Nash-Sutcliffe efficiency to improve the accuracy of the Sobol’sensitivity analysis of a hydrological model. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22–27 April 2012; p. 237. [Google Scholar]
Model | Architecture | Type | Training Strategy | MSE | MAE | NNSE |
---|---|---|---|---|---|---|
TimeGPT | Transformer | F | A broad dataset1/None | 0.01042 | 0.0593 | 0.5484 |
iTransformer-M4 | Transformer | F | M4/Earthquake | 0.00702 | 0.0537 | 0.5902 |
Time-LLM | Transformer | F | WebText/Earthquake | 0.00652 | 0.0522 | 0.6077 |
TSMixer-M4 | MLP | F | M4/Earthquake | 0.00651 | 0.0535 | 0.6081 |
Chronos | Transformer | F | A broad dataset2/None | 0.00650 | 0.0519 | 0.6087 |
PatchTST-TrafficL | Transformer | F | TrafficL/Earthquake | 0.00644 | 0.0501 | 0.6107 |
TiDE | MLP | P | None/Earthquake | 0.00643 | 0.0519 | 0.6110 |
TSMixer-TrafficL | MLP | F | TrafficL/Earthquake | 0.00643 | 0.0505 | 0.6111 |
TimesNet | CNN | P | None/Earthquake | 0.00643 | 0.0560 | 0.6112 |
PatchTST-M4 | Transformer | F | M4/Earthquake | 0.00641 | 0.0504 | 0.6117 |
PatchTST-Weather | Transformer | F | Weather/Earthquake | 0.00641 | 0.0502 | 0.6119 |
iTransformer-TrafficL | Transformer | F | TrafficL/Earthquake | 0.00639 | 0.0513 | 0.6125 |
TCN | CNN | P | None/Earthquake | 0.00637 | 0.0535 | 0.6132 |
VanillaTransformer | Transformer | P | None/Earthquake | 0.00635 | 0.0498 | 0.6141 |
TFT | Transformer+RNN | P | None/Earthquake | 0.00635 | 0.0555 | 0.6142 |
LSTM | RNN | P | None/Earthquake | 0.00631 | 0.0514 | 0.6156 |
DilatedRNN | RNN | P | None/Earthquake | 0.00630 | 0.0510 | 0.6159 |
GNNCoder | GNN | P | None/Earthquake | 0.00628 | 0.0522 | 0.6166 |
Multi Foundation Quake 1 | Hybrid+LSTM | F | Multi-domain/Earthquake | 0.00626 | 0.0516 | 0.6174 |
Multi Foundation Quake 2 | Hybrid+GNN | F | Multi-domain/Earthquake | 0.00625 | 0.0514 | 0.6175 |
Section | Model | MSE | MAE | NNSE | iTrans-M4 | Patch-Traf | iTrans-Traf | TFT | LSTM | DilatedRNN |
---|---|---|---|---|---|---|---|---|---|---|
Section A: Individual Results of Input Models | ||||||||||
A | iTransformer-M4 | 0.00702 | 0.0537 | 0.5902 | * | |||||
PatchTST-TrafficL | 0.00644 | 0.0501 | 0.6107 | * | ||||||
iTransformer-TrafficL | 0.00639 | 0.0513 | 0.6125 | * | ||||||
TFT | 0.00635 | 0.0555 | 0.6142 | * | ||||||
LSTM | 0.00631 | 0.0514 | 0.6156 | * | ||||||
DilatedRNN | 0.00630 | 0.0510 | 0.6159 | * | ||||||
Section B: Systematic Evaluation of the Effect of Removing Lower-Performing Models | ||||||||||
B | Multi Foundation Quake 1 | 0.00627 | 0.0518 | 0.6171 | * | * | * | * | * | * |
Multi Foundation Quake 1 | 0.00626 | 0.0516 | 0.6174 | * | * | * | * | * | ||
Multi Foundation Quake 1 | 0.00627 | 0.0517 | 0.6172 | * | * | * | * | |||
Multi Foundation Quake 1 | 0.00627 | 0.0515 | 0.6169 | * | * | * | ||||
Multi Foundation Quake 1 | 0.00627 | 0.0514 | 0.6171 | * | * | |||||
Multi Foundation Quake 1 | 0.00627 | 0.0515 | 0.6170 | * | ||||||
Section C: Systematic Evaluation of Each Input Model’s Impact | ||||||||||
C | Multi Foundation Quake 1 | 0.00627 | 0.0518 | 0.6170 | * | * | * | * | * | |
Multi Foundation Quake 1 | 0.00626 | 0.0515 | 0.6172 | * | * | * | * | * | ||
Multi Foundation Quake 1 | 0.00627 | 0.0516 | 0.6171 | * | * | * | * | * | ||
Multi Foundation Quake 1 | 0.00627 | 0.0518 | 0.6171 | * | * | * | * | * | ||
Multi Foundation Quake 1 | 0.00627 | 0.0517 | 0.6170 | * | * | * | * | * | ||
Multi Foundation Quake 1 | 0.00626 | 0.0516 | 0.6174 | * | * | * | * | * |
Model | Layer | MSE | MAE | NNSE |
---|---|---|---|---|
GNNCoder | 2-layer | 0.00632 | 0.0520 | 0.6153 |
GNNCoder | 3-layer | 0.00629 | 0.0524 | 0.6162 |
GNNCoder | 1-layer | 0.00628 | 0.0522 | 0.6166 |
Model | Input | MSE | MAE | NNSE |
---|---|---|---|---|
LSTM | Single feature | 0.00631 | 0.0514 | 0.6156 |
LSTM | + Multiplicity | 0.00630 | 0.0506 | 0.6158 |
DilatedRNN | Single feature | 0.00630 | 0.0510 | 0.6159 |
LSTM | + Multiplicity + EMA | 0.00629 | 0.0527 | 0.6162 |
LSTM | + EMA | 0.00628 | 0.0517 | 0.6164 |
GNNCoder 1-layer | + Multiplicity | 0.00628 | 0.0520 | 0.6165 |
GNNCoder 1-layer | Single feature | 0.00628 | 0.0522 | 0.6166 |
GNNCoder 1-layer | + Multiplicity + EMA | 0.00627 | 0.0517 | 0.6169 |
DilatedRNN | + Multiplicity | 0.00627 | 0.0517 | 0.6169 |
GNNCoder 1-layer | + EMA | 0.00627 | 0.0525 | 0.6172 |
DilatedRNN | + EMA | 0.00627 | 0.0519 | 0.6174 |
DilatedRNN | + Multiplicity + EMA | 0.00626 | 0.0517 | 0.6174 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafari, A.; Fox, G.; Rundle, J.B.; Donnellan, A.; Ludwig, L.G. Time Series Foundation Models and Deep Learning Architectures for Earthquake Temporal and Spatial Nowcasting. GeoHazards 2024, 5, 1247-1274. https://doi.org/10.3390/geohazards5040059
Jafari A, Fox G, Rundle JB, Donnellan A, Ludwig LG. Time Series Foundation Models and Deep Learning Architectures for Earthquake Temporal and Spatial Nowcasting. GeoHazards. 2024; 5(4):1247-1274. https://doi.org/10.3390/geohazards5040059
Chicago/Turabian StyleJafari, Alireza, Geoffrey Fox, John B. Rundle, Andrea Donnellan, and Lisa Grant Ludwig. 2024. "Time Series Foundation Models and Deep Learning Architectures for Earthquake Temporal and Spatial Nowcasting" GeoHazards 5, no. 4: 1247-1274. https://doi.org/10.3390/geohazards5040059
APA StyleJafari, A., Fox, G., Rundle, J. B., Donnellan, A., & Ludwig, L. G. (2024). Time Series Foundation Models and Deep Learning Architectures for Earthquake Temporal and Spatial Nowcasting. GeoHazards, 5(4), 1247-1274. https://doi.org/10.3390/geohazards5040059