Characterization of the Complete Mitochondrial Genome of Dwarf Form of Purpleback Flying Squid (Sthenoteuthis oualaniensis) and Phylogenetic Analysis of the Family Ommastrephidae
<p>Annotated mitochondrial genome of dwarf form of <span class="html-italic">S. oualaniensis</span>. Blue bars denote protein-coding genes, virescent bars represent rRNA genes, and lavender bars indicate tRNA genes. The direction of transcription is shown by the orientation of gene arrows: arrows pointing to the right indicate the heavy strand, while those pointing to the left denote the light strand. The black circle represents GC content, with outward projections indicating GC content above the average level and inward projections indicating below-average content. The GC skew is depicted using purple and green circles, where green represents negative GC skew and deep purple indicates positive GC skew.</p> "> Figure 2
<p>Relative synonymous codon usage (RSCU) patterns in the medium-sized and dwarf forms of <span class="html-italic">S. oualaniensis</span>.</p> "> Figure 3
<p>The ratio of nonsynonymous to synonymous substitutions (Ka/Ks) across 13 protein coding genes in two forms of <span class="html-italic">S. oualaniensis</span>.</p> "> Figure 4
<p>Bayesian inference (BI) (<b>A</b>) and maximum likelihood (ML) (<b>B</b>) phylogenetic trees illustrating the evolutionary relationships among cephalopod species based on mitochondrial genome sequences. The tree is rooted with <span class="html-italic">A. dux</span> as the outgroup. Posterior probabilities and support value are displayed at the nodes. Notable clades include multiple mitochondrial haplotypes of <span class="html-italic">S. oualaniensis</span> forming a well-supported cluster, and a close relationship between <span class="html-italic">D. gigas</span> and <span class="html-italic">Eucleoteuthis luminosa</span>. The longer branch lengths of <span class="html-italic">T. pacificus</span> and <span class="html-italic">I. argentinus</span> indicate greater genetic divergence compared to other taxa. The scale bar represents genetic distance.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Identification of Morphology
2.2. DNA Extraction, Sequencing and Annotation
2.3. Phylogenetic Analysis
3. Results
3.1. Mitogenome Structure
3.2. Phylogenetic Tree
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunning, M.C. A review of the systematics, distribution, and biology of arrow squids genera Ommastrephes Orbigny, 1835, Sthenoteuthis Verrill, 1880, and Ornithoteuthis Okada, 1927 (Cephalopoda: Ommastrephidae). In Systematics and Biogeography of Cephalopods. Smithsonian Contributions to Zoology 586: Volume 2; Voss, N.A., Vecchione, M., Toll, R.B., Sweeney, M.J., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1998; pp. 425–433. [Google Scholar]
- Jereb, P.; Roper, C.F.E. Cephalopod of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Know to Date. Volume 2. Myopsid and Oegopsid Squids; FAO Species Catalogue for Fishery Purposes: Rome, Italy, 2010; Volume 4, p. 649. [Google Scholar]
- Markaida, U.; Gilly, W.F. Cephalopods of Pacific Latin America. Fish. Res. 2016, 173, 113–121. [Google Scholar] [CrossRef]
- Ward, P.; Barord, G.J.; Schauer, A.; Veloso, J. Comparative Trophic Levels of Phragmocone-Bearing Cephalopods (Nautiloids, Ammonoids, and Sepiids). Integr. Comp. Biol. 2023, 63, 1285–1297. [Google Scholar] [CrossRef]
- Merten, V.; Christiansen, B.; Javidpour, J.; Piatkowski, U.; Puebla, O.; Gasca, R.; Hoving, H.-J.T. Diet and stable isotope analyses reveal the feeding ecology of the orangeback squid Sthenoteuthis pteropus (Steenstrup 1855) (Mollusca, Ommastrephidae) in the eastern tropical Atlantic. PLoS ONE 2017, 12, e0189691. [Google Scholar] [CrossRef] [PubMed]
- Camarillo-Coop, S.; Salinas-Zavala, C.A.; Lavaniegos, B.E.; Markaida, U. Food in early life stages of Dosidicus gigas (Cephalopoda: Ommastrephidae) from the Gulf of California, Mexico. J. Mar. Biol. Assoc. U. K. 2013, 93, 1903–1910. [Google Scholar] [CrossRef]
- Moltschaniwskyj, N.A. Understanding the process of growth in cephalopods. Mar. Freshwat. Res. 2004, 55, 379–386. [Google Scholar] [CrossRef]
- Leporati, S.C.; Pecl, G.T.; Semmens, J.M. Cephalopod hatchling growth: The effects of initial size and seasonal temperatures. Mar. Biol. 2007, 151, 1375–1383. [Google Scholar] [CrossRef]
- Pierce, G.J.; Valavanis, V.D.; Guerra, A.; Jereb, P.; Orsi-Relini, L.; Bellido, J.M.; Katara, I.; Piatkowski, U.; Pereira, J.; Balguerias, E.; et al. A review of cephalopod–environment interactions in European Seas. Hydrobiologia 2008, 612, 49–70. [Google Scholar] [CrossRef]
- Ji, F.; Guo, X. A new way to understand migration routes of oceanic squid (Ommastrephidae) from satellite data. Remote Sens. Ecol. Conserv. 2024, 10, 248–263. [Google Scholar] [CrossRef]
- Yu, W.; Chen, X. Habitat suitability response to sea-level height changes: Implications for Ommastrephid squid conservation and management. Aquac. Fish. 2021, 6, 309–320. [Google Scholar] [CrossRef]
- Arkhipkin, A.I.; Hendrickson, L.C.; Payá, I.; Pierce, G.J.; Roa-Ureta, R.H.; Robin, J.-P.; Winter, A. Stock assessment and management of cephalopods: Advances and challenges for short-lived fishery resources. ICES J. Mar. Sci. 2021, 78, 714–730. [Google Scholar] [CrossRef]
- Hunsicker, M.E.; Essington, T.E.; Watson, R.; Sumaila, U.R. The contribution of cephalopods to global marine fisheries: Can we have our squid and eat them too? Fish Fish. 2010, 11, 421–438. [Google Scholar] [CrossRef]
- González, Á.F.; Pierce, G.J. Advances in the study of cephalopod fisheries and ecosystems. Fish. Res. 2021, 242, 105975. [Google Scholar] [CrossRef]
- Piatkowski, U.; Pierce, G.J.; Morais da Cunha, M. Impact of cephalopods in the food chain and their interaction with the environment and fisheries: An overview. Fish. Res. 2001, 52, 5–10. [Google Scholar] [CrossRef]
- Anderson, C.I.H.; Rodhouse, P.G. Life cycles, oceanography and variability: Ommastrephid squid in variable oceanographic environments. Fish. Res. 2001, 54, 133–143. [Google Scholar] [CrossRef]
- Oesterwind, D.; Piatkowski, U.; Brendelberger, H. On distribution, size and maturity of shortfin squids (Cephalopoda, Ommastrephidae) in the North Sea. Mar. Biol. Res. 2015, 11, 188–196. [Google Scholar] [CrossRef]
- Pang, Y.; Tian, Y.; Fu, C.; Wang, B.; Li, J.; Ren, Y.; Wan, R. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fish. Res. 2018, 208, 22–33. [Google Scholar] [CrossRef]
- Ibáñez, C.M.; Argüelles, J.; Yamashiro, C.; Sepúlveda, R.D.; Pardo-Gandarillas, M.C.; Keyl, F. Population dynamics of the squids Dosidicus gigas (Oegopsida: Ommastrephidae) and Doryteuthis gahi (Myopsida: Loliginidae) in Northern Peru. Fish. Res. 2016, 173, 151–158. [Google Scholar] [CrossRef]
- Xavier, J.C.; Cherel, Y.; Allcock, L.; Rosa, R.; Sabirov, R.M.; Blicher, M.E.; Golikov, A.V. A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean. Mar. Biol. 2018, 165, 93. [Google Scholar] [CrossRef]
- Peng, D.; Liu, H.; Zhang, W.; Xu, L.; Jiang, R.; Zhu, Y.; García-Lorenzo, I.; Chu, J.; Sumaila, U.R. Global sustainability assessment of cephalopod fisheries based on pressure-state-response framework. iScience 2024, 27, 110986. [Google Scholar] [CrossRef] [PubMed]
- Lishchenko, F.; Perales-Raya, C.; Barrett, C.; Oesterwind, D.; Power, A.M.; Larivain, A.; Laptikhovsky, V.; Karatza, A.; Badouvas, N.; Lishchenko, A.; et al. A review of recent studies on the life history and ecology of European cephalopods with emphasis on species with the greatest commercial fishery and culture potential. Fish. Res. 2021, 236, 105847. [Google Scholar] [CrossRef]
- Pardo-Gandarillas, M.C.; Torres, F.I.; Fuchs, D.; Ibáñez, C.M. Updated molecular phylogeny of the squid family Ommastrephidae: Insights into the evolution of spawning strategies. Mol. Phylogen. Evol. 2018, 120, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Álvarez, F.Á.; Taite, M.; Vecchione, M.; Villanueva, R.; Allcock, A.L. A phylogenomic look into the systematics of oceanic squids (order Oegopsida). Zool. J. Linn. Soc. 2022, 194, 1212–1235. [Google Scholar] [CrossRef]
- Pei, L.; Jiang, L.; Chen, C.; Ye, Y.; Jing, F.; Liu, Y.; Liu, B. Gene rearrangements in the mitochondrial genome of Eucleoteuthis luminosa (Ommastrephidae, Cephalopoda) and phylogenetic implications for Coleoidea. Hydrobiologia 2023, 850, 3611–3626. [Google Scholar] [CrossRef]
- Fernández-Álvarez, F.Á.; Braid, H.E.; Nigmatullin, C.M.; Bolstad, K.S.R.; Haimovici, M.; Sánchez, P.; Sajikumar, K.K.; Ragesh, N.; Villanueva, R. Global biodiversity of the genus Ommastrephes (Ommastrephidae: Cephalopoda): An allopatric cryptic species complex. Zool. J. Linn. Soc. 2020, 190, 460–482. [Google Scholar] [CrossRef]
- Murata, M. Oceanic resources of squids. Mar. Behav. Physiol. 1990, 18, 19–71. [Google Scholar] [CrossRef]
- Nesis, K.N. Population structure in the squid Sthenoteuthis oulaniensis (Lesson, 1830) (Ommastrephidae) in the Western tropical Pacific. Tr. Instituta Okeanol. 1977, 107, 15–29. [Google Scholar]
- Zuyev, G.; Nigmatullin, C.; Chesalin, M.; Nesis, K. Main results of long-term worldwide studies on tropical nektonic oceanic squid genus Sthenoteuthis: An overview of the Soviet investigations. Bull. Mar. Sci. 2002, 71, 1019–1060. [Google Scholar]
- Nesis, K.N. Population structure of oceanic ommastrephids, with particular reference to S. oualaniensis: A review. In Recent Advances in Fisheries Biology; Okutani, T., O’Dor, R.K., Kubodera, T., Eds.; Tokai University Press: Tokyo, Japan, 1993; pp. 375–383. [Google Scholar]
- Jeena, N.S.; Sajikumar, K.K.; Rahuman, S.; Ragesh, N.; Koya, K.P.S.; Chinnadurai, S.; Sasikumar, G.; Mohamed, K.S. Insights into the divergent evolution of the oceanic squid S. oualaniensis (Cephalopoda: Ommastrephidae) from the Indian Ocean. Integr. Zool. 2023, 18, 924–948. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, P.; Wang, X.; Van Damme, K.; Du, F. Phylogenetic relationships and cryptic species in the genus Sthenoteuthis (Cephalopoda: Ommastrephidae) in the South China Sea. Mol. Phylogen. Evol. 2020, 149, 106846. [Google Scholar] [CrossRef]
- White, D.J.; Wolff, J.N.; Pierson, M.; Gemmell, N.J. Revealing the hidden complexities of mtDNA inheritance. Mol. Ecol. 2008, 17, 4925–4942. [Google Scholar] [CrossRef]
- Harrison, R.G. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol. Evol. 1989, 4, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Ballard, J.W.O.; Whitlock, M.C. The incomplete natural history of mitochondria. Mol. Ecol. 2004, 13, 729–744. [Google Scholar] [CrossRef]
- Bernt, M.; Braband, A.; Schierwater, B.; Stadler, P.F. Genetic aspects of mitochondrial genome evolution. Mol. Phylogen. Evol. 2013, 69, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Barratt, I.; Allcock, L.S. oualaniensis. The IUCN Red List of Threatened Species 2014, e.T163152A977501. Available online: https://www.iucnredlist.org/species/163152/977501 (accessed on 10 May 2010).
- Snyder, R. Aspects of the biology of the giant form of S. oualaniensis (Cephalopoda ommastrephidae) from the Arabian Sea. J. Molluscan Stud. 1998, 64, 21–34. [Google Scholar] [CrossRef]
- Yokobori, S.-i.; Fukuda, N.; Nakamura, M.; Aoyama, T.; Oshima, T. Long-Term Conservation of Six Duplicated Structural Genes in Cephalopod Mitochondrial Genomes. Mol. Biol. Evol. 2004, 21, 2034–2046. [Google Scholar] [CrossRef]
- Hahn, C.; Bachmann, L.; Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads A baiting and iterative mapping approach. Nucleic Acids Res. 2013, 41, e129. [Google Scholar] [CrossRef] [PubMed]
- Swindell, S.; Plasterer, T. Seqman, contig assembly. In Sequence Data Analysis Guidebook; Swindell, S., Ed.; Humana Press: Totowa, NJ, USA, 1997; pp. 75–89. [Google Scholar]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, W181–W184. [Google Scholar] [CrossRef] [PubMed]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Huang, D.; Li, Y.; Wang, L.; Ning, J.; Du, F. The complete mitochondrial genome of middle-sized form of S. oualaniensis (Cephalopoda: Ommastrephidae) from the South China Sea. Mitochondrial DNA B Resour. 2020, 5, 3030–3032. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence algnment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Li, X.-R.; Sun, C.-H.; Zhan, Y.-J.; Jia, S.-X.; Lu, C.-H. Complete mitochondrial genome sequence of Nannostomus eques and comparative analysis with Nannostomus beckfordi. Mol. Genet. Genomics 2024, 300, 3. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Gissi, C.; Iannelli, F.; Pesole, G. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 2008, 101, 301–320. [Google Scholar] [CrossRef]
- Duchene, S.; Frey, A.; Alfaro-Núñez, A.; Dutton, P.H.; Thomas, P.; Gilbert, M.; Morin, P.A. Marine turtle mitogenome phylogenetics and evolution. Mol. Phylogen. Evol. 2012, 65, 241–250. [Google Scholar] [CrossRef]
- Lee, Y.; Kwak, H.; Shin, J.; Kim, S.-C.; Kim, T.; Park, J.-K. A mitochondrial genome phylogeny of Mytilidae (Bivalvia: Mytilida). Mol. Phylogen. Evol. 2019, 139, 106533. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yan, S.; Ma, P.; Zhang, Y.; Zuo, C.; Ma, X.; Zhang, Z. Comparative mitochondrial genome analysis provides new insights into the classification of Modiolinae. Mol. Biol. Rep. 2024, 51, 823. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, Q.; Xu, Q.; Schubert, M.; Laudet, V.; Wang, Y. Complete mitochondrial genomes defining two distinct lancelet species in the West Pacific Ocean. Mar. Biol. Res. 2009, 5, 278–285. [Google Scholar] [CrossRef]
- Sun, C.-H.; Lu, C.-H.; Wang, Z.-J. Comparison and phylogenetic analysis of the mitochondrial genomes of Synodontis eupterus and Synodontis polli. Sci. Rep. 2024, 14, 15393. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-H.; Gu, Y.-L.; Liu, D.-W.; Du, H.-W.; Lu, C.-H. Sequencing and Analysis of the Complete Mitochondrial Genome of Lentipes ikeae. Animals 2024, 14, 943. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-H.; Lu, C.-H. Comparative Analysis and Phylogenetic Study of Dawkinsia filamentosa and Pethia nigrofasciata Mitochondrial Genomes. Int. J. Mol. Sci. 2024, 25, 3004. [Google Scholar] [CrossRef] [PubMed]
- Uribe, J.E.; Zardoya, R. Revisiting the phylogeny of Cephalopoda using complete mitochondrial genomes. J. Molluscan Stud. 2017, 83, 133–144. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, W.; Zhang, J.; Zhu, A.; Wu, C. Complete mitochondrial genome of Argentine shortfin squid (Illex argentines). Mitochondrial DNA Part A 2016, 27, 3335–3336. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, I.; Campos, P.F.; Strugnell, J.; Cherel, Y.; Smith, P.J.; Kubodera, T.; Allcock, L.; Kampmann, M.-L.; Schroeder, H.; Guerra, A.; et al. Mitochondrial genome diversity and population structure of the giant squid Architeuthis: Genetics sheds new light on one of the most enigmatic marine species. Proc. R. Soc. B. 2013, 280, 20130273. [Google Scholar] [CrossRef] [PubMed]
- Tomita, K.; Yokobori, S.-i.; Oshima, T.; Ueda, T.; Watanabe, K. The Cephalopod Loligo bleekeri Mitochondrial Genome: Multiplied Noncoding Regions and Transposition of tRNA Genes. J. Mol. Evol. 2002, 54, 486–500. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Pei, L.; Jiang, L.; Ye, Y.; Liu, Y.; Liu, B. Gene Rearrangements in the Mitochondrial Genome of Gonatopsis borealis and Onychoteuthis compacta Reveal Their Phylogenetic Implications for Oegopsida. Biochem. Genet. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, X.; Ma, Y.; Zheng, X. Descriptive study of the mitogenome of the diamondback squid (Thysanoteuthis rhombus Troschel, 1857) and the evolution of mitogenome arrangement in oceanic squids. J. Zool. Syst. Evol. Res. 2021, 59, 981–991. [Google Scholar] [CrossRef]
- Misuzu, A.; Hideyuki, I.; Tohru, N.; Yuzuru, I. Low Genetic Diversity of Oval Squid, Sepioteuthis cf. lessoniana (Cephalopoda: Loliginidae), in Japanese Waters Inferred from a Mitochondrial DNA Non-coding Region. Pac. Sci. 2008, 62, 403–411. [Google Scholar] [CrossRef]
- Staaf, D.J.; Ruiz-Cooley, R.I.; Elliger, C.; Lebaric, Z.; Campos, B.; Markaida, U.; Gilly, W.F. Ommastrephid squids S. oualaniensis and Dosidicus gigas in the eastern Pacific show convergent biogeographic breaks but contrasting population structures. Mar. Ecol. Prog. Ser. 2010, 418, 165–178. [Google Scholar] [CrossRef]
- Strugnell, J.; Norman, M.; Jackson, J.; Drummond, A.J.; Cooper, A. Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Mol. Phylogen. Evol. 2005, 37, 426–441. [Google Scholar] [CrossRef] [PubMed]
- Strugnell, J.M.; Lindgren, A.R. A barcode of life database for the Cephalopoda? Considerations and concerns. Rev. Fish Biol. Fish. 2007, 17, 337–344. [Google Scholar] [CrossRef]
- Kawashima, Y.; Nishihara, H.; Akasaki, T.; Nikaido, M.; Tsuchiya, K.; Segawa, S.; Okada, N. The complete mitochondrial genomes of deep-sea squid (Bathyteuthis abyssicola), bob-tail squid (Semirossia patagonica) and four giant cuttlefish (Sepia apama, S. latimanus, S. lycidas and S. pharaonis), and their application to the phylogenetic analysis of Decapodiformes. Mol. Phylogen. Evol. 2013, 69, 980–993. [Google Scholar] [CrossRef]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef]
- Yang, Z.; Bielawski, J.P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 2000, 15, 496–503. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Suzuki, N.; Sakai, M.; Ichii, T.; Chow, S. Phylogenetic relationships among the family Ommastrephidae (Mollusca: Cephalopoda) inferred from two mitochondrial DNA gene sequences. Mar. Genom. 2012, 7, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, T.; Suzuki, N.; Sakai, M.; Ichii, T.; Chow, S. Identification of ommastrephid squid paralarvae collected in northern Hawaiian waters and phylogenetic implications for the family Ommastrephidae using mtDNA analysis. Fish. Sci. 2006, 72, 494–502. [Google Scholar] [CrossRef]
- Carvalho, G.R.; Thompson, A.; Stoner, A.L. Genetic diversity and population differentiation of the shortfin squid Illex argentinus in the south-west Atlantic. J. Exp. Mar. Biol. Ecol. 1992, 158, 105–121. [Google Scholar] [CrossRef]
- Carlini, D.B.; Kunkle, L.K.; Vecchione, M. A molecular systematic evaluation of the squid genus Illex (Cephalopoda: Ommastrephidae) in the North Atlantic Ocean and Mediterranean Sea. Mol. Phylogen. Evol. 2006, 41, 496–502. [Google Scholar] [CrossRef] [PubMed]
Dwarf Form of S. oualaniensis | Medium-Sized Form of S. oualaniensis | |||||||
---|---|---|---|---|---|---|---|---|
Feature | Strand | Position | Length | Initiation/ Stop Codon | Strand | Position | Length | Initiation/ Stop Codon |
COX3 | H | 1-780 | 780 | ATG/TAA | H | 1-780 | 780 | ATG/TAA |
tRNA-Ala | H | 814-881 | 68 | H | 811-878 | 68 | ||
tRNA-Asn | H | 890-958 | 69 | H | 888-956 | 69 | ||
tRNA-Ile | H | 961-1026 | 66 | H | 959-1023 | 65 | ||
ND3 | H | 1027-1380 | 354 | ATG/TAA | H | 1024-1377 | 354 | ATG/TAA |
COX1 | H | 1434-2966 | 1533 | ATG/TAA | H | 1421-2953 | 1533 | ATG/TAG |
COX2 | H | 2968-3655 | 688 | ATG/AAT | H | 2955-3642 | 688 | ATG/TAA |
tRNA-Asp | H | 3656-3722 | 67 | H | 3643-3709 | 67 | ||
ATP8 | H | 3724-3879 | 156 | ATG/TAA | H | 3711-3866 | 156 | ATG/TAA |
ATP6 | H | 3881-4573 | 693 | ATG/TAG | H | 3868-4560 | 693 | ATG/TAG |
tRNA-Phe | L | 4666-4600 | 67 | L | 4652-4587 | 66 | ||
tRNA-Val | L | 4733-4665 | 69 | L | 4719-4651 | 69 | ||
12S rRNA | L | 5723-4734 | 990 | L | 5704-4720 | 985 | ||
tRNA-Cys | L | 5788-5724 | 65 | L | 5770-5705 | 66 | ||
tRNA-Gln | L | 5858-5792 | 67 | L | 5839-5773 | 67 | ||
long non-coding region | H | 5859-6419 | 561 | H | 5843-6403 | 561 | ||
COX3 | H | 6420-7199 | 780 | ATG/TAA | H | 6404-7183 | 780 | ATG/TAA |
tRNA-Lys | H | 7206-7273 | 68 | H | 7189-7256 | 68 | ||
tRNA-Arg | H | 7274-7340 | 67 | H | 7257-7323 | 67 | ||
tRNA-Ser | H | 7381-7448 | 68 | H | 7365-7432 | 68 | ||
ND2 | H | 7449-8489 | 1041 | ATG/TAA | H | 7433-8473 | 1041 | ATT/TAA |
COX1 | H | 8461-9993 | 1533 | ATG/TAA | H | 8445-9977 | 1533 | ATG/TAG |
COX2 | H | 9995-10682 | 688 | ATG/AAT | H | 9979-10666 | 688 | ATG/TAA |
tRNA-Asp | H | 10683-10749 | 67 | H | 10667-10733 | 67 | ||
ATP8 | H | 10751-10906 | 156 | ATG/TAA | H | 10735-10890 | 156 | ATG/TAA |
ATP6 | H | 10908-11600 | 693 | ATG/TAG | H | 10892-11584 | 693 | ATG/TAG |
ND5 | L | 13322-11625 | 1698 | ATG/TAA | L | 13306-11609 | 1698 | ATT/TAA |
tRNA-His | L | 13390-13323 | 68 | L | 13373-13307 | 67 | ||
ND4 | L | 14750-13391 | 1360 | ATA/TAG | L | 14734-13374 | 1361 | ATA/TAG |
ND4L | L | 15043-14747 | 297 | ATG/TAG | L | 15027-14731 | 297 | ATG/TAG |
tRNA-Thr | L | 15116-15052 | 65 | L | 15036-15101 | 66 | ||
tRNA-Ser | L | 15182-15118 | 65 | L | 15167-15103 | 65 | ||
Cytb | L | 16326-15183 | 1144 | ATA/TAG | L | 16311-15168 | 1144 | ATA/TAG |
ND6 | L | 16829-16323 | 507 | ATG/TAG | L | 16814-16308 | 507 | ATG/TAG |
tRNA-Pro | L | 16897-16831 | 67 | L | 16882-16816 | 67 | ||
ND1 | L | 17833-16898 | 936 | ATG/TAA | L | 17818-16883 | 936 | ATA/TAG |
tRNA-Leu | L | 17903-17834 | 70 | L | 17888-17819 | 70 | ||
tRNA-Leu | L | 17975-17909 | 67 | L | 17960-17894 | 67 | ||
16S rRNA | L | 19400-17976 | 1425 | L | 19391-17961 | 1431 | ||
tRNA-Met | L | 19471-19401 | 71 | L | 19462-19392 | 71 | ||
tRNA-Tyr | L | 19541-19476 | 66 | L | 19531-19467 | 65 | ||
tRNA-Trp | L | 19608-19542 | 67 | L | 19598-19532 | 67 | ||
tRNA-Gly | L | 19681-19617 | 65 | L | 19668-19604 | 65 | ||
tRNA-Glu | L | 19758-19685 | 74 | L | 19744-19672 | 73 | ||
long non-coding region | H | 19759-20320 | 562 | H | 19747-20308 | 562 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duo, W.; Xu, L.; Mohd Yusof, M.J.; Wang, Y.; Ng, S.B.; Du, F. Characterization of the Complete Mitochondrial Genome of Dwarf Form of Purpleback Flying Squid (Sthenoteuthis oualaniensis) and Phylogenetic Analysis of the Family Ommastrephidae. Genes 2025, 16, 226. https://doi.org/10.3390/genes16020226
Duo W, Xu L, Mohd Yusof MJ, Wang Y, Ng SB, Du F. Characterization of the Complete Mitochondrial Genome of Dwarf Form of Purpleback Flying Squid (Sthenoteuthis oualaniensis) and Phylogenetic Analysis of the Family Ommastrephidae. Genes. 2025; 16(2):226. https://doi.org/10.3390/genes16020226
Chicago/Turabian StyleDuo, Wenjuan, Lei Xu, Mohd Johari Mohd Yusof, Yingmin Wang, Seng Beng Ng, and Feiyan Du. 2025. "Characterization of the Complete Mitochondrial Genome of Dwarf Form of Purpleback Flying Squid (Sthenoteuthis oualaniensis) and Phylogenetic Analysis of the Family Ommastrephidae" Genes 16, no. 2: 226. https://doi.org/10.3390/genes16020226
APA StyleDuo, W., Xu, L., Mohd Yusof, M. J., Wang, Y., Ng, S. B., & Du, F. (2025). Characterization of the Complete Mitochondrial Genome of Dwarf Form of Purpleback Flying Squid (Sthenoteuthis oualaniensis) and Phylogenetic Analysis of the Family Ommastrephidae. Genes, 16(2), 226. https://doi.org/10.3390/genes16020226