Complete Plastid Genomes of Nine Species of Ranunculeae (Ranunculaceae) and Their Phylogenetic Inferences
<p>Gene maps of the newly sequenced plastome sequences of <span class="html-italic">Ranunculus</span> using Organellar Genome DRAW (<b>A</b>,<b>B</b>), <span class="html-italic">Ceratocephala</span> (<b>C</b>), and <span class="html-italic">Halerpestes</span> (<b>D</b>). For each circle, bold lines on the outer circle show the IR regions, while unbold lines indicate LSC and SSC regions. The inner track shows the G + C content. Genes transcribed in a clockwise direction are located on the outside of circle, while genes transcribed in a counterclockwise direction are on the inside of the map. LSC: large single copy region; SSC: small single copy region; IR: inverted repeat region. Arrows point the different IR-SC boundaries. Yellow and blue arrows indicate different changes at the same location in each of the four gene maps.</p> "> Figure 2
<p>Multiple sequence alignments of Ranunculeae samples and its allies by mVISTA program. (<b>A</b>): alignment with LAGAN method, the white (empty) regions in the Anemoneae and Adonideae samples are the inverted and transposed regions; (<b>B</b>): alignment with shuffle LAGAN method. Blue regions show the coding regions, while green shows the rRNA regions, and pink shows the non-coding regions.</p> "> Figure 3
<p>Detailed IR-SC boundaries of the newly sequenced samples. SC: single copy region; IR: inverted repeats.</p> "> Figure 4
<p>Graph of sliding window analysis showing plastome nucleotide variability (Pi) of <span class="html-italic">Ranunculus</span> (<b>A</b>) and Ranunculeae (<b>B</b>).</p> "> Figure 5
<p>The values of relative synonymous codon usage for the 20 amino acids and stop codons in the plastomes of the newly sequenced samples.</p> "> Figure 6
<p>Graphs of repeated sequence analyses for the newly assembled plastomes. (<b>A</b>) Histogram of four repeat type numbers; (<b>B</b>) Histogram of palindromic repeats by length; (<b>C</b>) Pie chart showing proportion of repeats in different locations; (<b>D</b>) Histogram of forward repeats by length.</p> "> Figure 7
<p>The Bayesian phylogenetic tree of all the currently available Ranunculaceae samples inferred from the complete plastome data. Numbers on nodes indicate maximum likelihood (ML) bootstrap values/posterior probability (PP) values. Bold branches show the fully supported clades with the ML bootstrap values =100 and PP values = 1.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Sampling and Next-Generation Sequencing
2.2. Plastid Genome Assembling and Annotating
2.3. Comparative Analyses of the Plastomes
2.4. Positive Selection Analysis
2.5. Phylogenetic Analysis
3. Results
3.1. Plastome Characterization of Ranunculeae Genera and Species
3.2. Comparative Results of the Plastomes
3.3. Synonymous Codon Usage
3.4. SSR, Repetitive Sequences and Positive Selection Analysis
3.5. Partitioning and Phylogenetic Reconstruction Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SC | Single copy region |
LSC | Large single copy region |
SSC | Small single copy region |
IR | Inverted repeat region |
CDS | Coding regions |
IGS | Intergenic spacer regions |
dN | Nonsynonymous substitution |
dS | Synonymous substitution |
Pi | Nucleotide variability |
BEB | Bayes Empirical Bayes |
PP | Posterior probability values |
ML | Maximum likelihood |
BI | Bayesian inference |
BIC | Bayesian information criterion |
SSRs | Simple sequence repeats |
RSCU | Relative synonymous codon usage |
NGS | Next-generation sequencing |
MISA | MIcroSAtellite |
References
- Tonti-Filippini, J.; Nevill, P.G.; Dixon, K.; Small, I. What can we do with 1000 plastid genomes? Plant J. 2017, 90, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Li, H.T.; Yi, T.S.; Gao, L.M.; Ma, P.F.; Zhang, T.; Yang, J.B.; Gitzendanner, M.A.; Fritsch, P.W.; Cai, J.; Luo, Y.; et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 2019, 5, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Li, H.T.; Luo, Y.; Gan, L.; Ma, P.F.; Gao, L.M.; Yang, J.B.; Cai, J.; Gitzendanner, M.A.; Fritsch, P.W.; Zhang, T.; et al. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 2021, 19, 232. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.Y.; Sun, P.C.; Yang, Y.Z.; Ma, J.X.; Liu, J.Q. Genome-scale angiosperm phylogenies based on nuclear, plastome, and mitochondrial datasets. J. Integr. Plant Biol. 2023, 65, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Wicke, S.; Schneeweiss, G.M.; Depamphilis, C.W.; Müller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.; Khurana, J.P.; Tyagi, A.K.; Khurana, P. An update on chloroplast genomes. Plant Syst. Evol. 2008, 271, 101–122. [Google Scholar] [CrossRef]
- McCauley, D.E.; Sundby, A.K.; Bailey, M.F.; Welch, M.E. Inheritance of chloroplast DNA is not strictly maternal in Silene vulgaris (Caryophyllaceae): Evidence from experimental crosses and natural populations. Am. J. Bot. 2007, 94, 1333–1337. [Google Scholar] [CrossRef]
- Robbins, E.H.J.; Kelly, S. The evolutionary constraints on angiosperm chloroplast adaptation. Genome Biol. Evol. 2023, 15, evad101. [Google Scholar] [CrossRef]
- Gitzendanner, M.A.; Soltis, P.S.; Yi, T.S.; Li, D.Z.; Soltis, D.E. Plastome phylogenetics: 30 years of inferences into plant evolution. Adv. Bot. Res. 2018, 85, 293–313. [Google Scholar]
- Tamura, M. Die Natürlichen Pflanzenfamilien, 2nd ed.; Duncker & Humblot: Berlin, Germany, 1995; pp. 389–440. [Google Scholar]
- Emadzade, K.; Lehnebach, C.; Lockhart, P.; Hörandl, E. A molecular phylogeny, morphology and classification of genera of Ranunculeae (Ranunculaceae). Taxon 2010, 59, 809–828. [Google Scholar] [CrossRef]
- Emadzade, K.; Hörandl, E. Northern Hemisphere origin, transoceanic dispersal, and diversification of Ranunculeae DC. (Ranunculaceae) in the Cenozoic. J. Biogeogr. 2011, 38, 517–530. [Google Scholar] [CrossRef]
- Wang, W.; Li, H.L.; Xiang, X.G.; Chen, Z.D. Revisiting the phylogeny of Ranunculeae: Implications for divergence time estimation and historical biogeography. J. Syst. Evol. 2014, 52, 551–565. [Google Scholar] [CrossRef]
- Wang, W.T.; Gilbert, M.G.; Ranunculus, L. Flora of China; Wu, Z.Y., Raven, P.H., Eds.; Science Press: St. Louis, MO, USA; Botanical Garden Press: Beijing, China, 2001; Volume 6, pp. 391–431. [Google Scholar]
- Wang, W.T. A revision of the genus Ranunculus in China (I). Bull. Bot. Res. 1995, 15, 137–180. [Google Scholar]
- Li, Q.J.; Su, N.; Zhang, L.; Tong, R.C.; Zhang, X.H.; Wang, J.R.; Chang, Z.Y.; Zhao, L.; Potter, D. Chloroplast genomes elucidate diversity, phylogeny, and taxonomy of Pulsatilla (Ranunculaceae). Sci. Rep. 2020, 10, 19781. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yao, M.; Lyu, R.D.; Lin, L.L.; Liu, H.J.; Pei, L.Y.; Yan, S.X.; Xie, L.; Cheng, J. Structural variation of the complete chloroplast genome and plastid phylogenomics of the genus Asteropyrum (Ranunculaceae). Sci. Rep. 2019, 9, 15285. [Google Scholar] [CrossRef]
- Niu, Y.F.; Su, T.; Wu, C.H.; Deng, J.; Yang, F.Z. Complete chloroplast genome sequences of the medicinal plant Aconitum transsectum (Ranunculaceae): Comparative analysis and phylogenetic relationships. BMC Genom. 2023, 24, 90. [Google Scholar]
- Zhai, W.; Duan, X.S.; Zhang, R.; Guo, C.C.; Li, L.; Xu, G.X.; Shan, H.Y.; Kong, H.Z.; Ren, Y. Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. Mol. Phylogenet. Evol. 2019, 135, 12–21. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 2, 1647–1649. [Google Scholar] [CrossRef]
- Qu, X.J.; Moore, M.J.; Li, D.Z.; Yi, T.S. PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 2019, 15, 50. [Google Scholar] [CrossRef]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. OrganellarGenomeDRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar] [CrossRef] [PubMed]
- Peden, F.J. Analysis of Codon Usage. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 1999. [Google Scholar]
- Mower, J.P. The PREP suite: Predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009, 37 (Suppl. 2), W253–W259. [Google Scholar] [CrossRef] [PubMed]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32 (Suppl. 2), W273–W279. [Google Scholar] [CrossRef] [PubMed]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol. 2005, 23, 48–55. [Google Scholar] [CrossRef]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Yang, Z.H. PAML: A program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 1997, 13, 555–556. [Google Scholar] [CrossRef]
- Yang, Z.H.; Dos Reis, M. Statistical properties of the branch-site test of positive selection. Mol. Biol. Evol. 2010, 28, 1217–1228. [Google Scholar] [CrossRef]
- Lan, Y.; Sun, J.; Tian, R.M.; Bartlett, D.H.; Li, R.S.; Wong, Y.H.; Zhang, W.P.; Qiu, J.W.; Xu, T.; He, L.S.; et al. Molecular adaptation in the world’s deepest-living animal: Insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas. Mol. Ecol. 2017, 26, 3732–3743. [Google Scholar] [CrossRef]
- Xie, D.F.; Yu, Y.; Deng, Y.Q.; Li, J.; Liu, H.Y.; Zhou, S.D.; He, X.J. Comparative analysis of the chloroplast genomes of the Chinese endemic genus Urophysa and their contribution to chloroplast phylogeny and adaptive evolution. Int. J. Mol. Sci. 2018, 19, 1847. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.R.; Park, S.Y.; Kim, H.; Hong, J.M.; Kim, S.Y.; Yu, J.N. Complete chloroplast genome determination of Ranunculus sceleratus from Republic of Korea (Ranunculaceae) and comparative chloroplast genomes of the members of the Ranunculus Genus. Genes 2023, 14, 1149. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Kuma, K.I.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.F.; Zhang, Y.X.; Zeng, C.X.; Guo, Z.H.; Li, D.Z. Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). Syst. Biol. 2014, 63, 933–950. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post–analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Johansson, J.T. There large inversions in the chloroplast genomes and one loss of the chloroplast gene rps16 suggest an early evolutionary split in the genus Adonis (Ranunculaceae). Plant Syst. Evol. 1999, 218, 133–143. [Google Scholar] [CrossRef]
- Powell, W.; Morgante, M.; McDevitt, R.; Vendramin, G.G.; Rafalski, J.A. Polymorphic simple sequence repeat regions in chloroplast genomes: Applications to the population genetics of pines. Proc. Natl. Acad. Sci. USA 1995, 92, 7759–7763. [Google Scholar] [CrossRef]
- Spach, E. Histoire Des Naturelle Végétaux. Phanérogames 7; Librairie encyclopédique de Roret: Paris, France, 1839. [Google Scholar]
- Hutchinson, J. Contributions towards a phylogenetic classification of flowering plants. Bull. Misc. Inf. 1923, 9, 65–89. [Google Scholar]
- Wang, W.; Lu, A.M.; Ren, Y.; Endress, M.E.; Chen, Z.D. Phylogeny and classifcation of Ranunculales: Evidence from four molecular loci and morphological data. Perspect. Plant Ecol. Evol. Syst. 2009, 11, 81–110. [Google Scholar] [CrossRef]
- Cossard, G.; Sannier, J.; Sauquet, H.; Damerval, C.; De Craene, L.R.; Jabbour, F.; Nadot, S. Subfamilial and tribal relationships of Ranunculaceae: Evidence from eight molecular markers. Plant Syst. Evol. 2016, 302, 419–431. [Google Scholar] [CrossRef]
- Hörandl, E.; Paun, O.; Johansson, J.T.; Lehnebach, C.; Armstrong, T.; Chen, L.; Lockhart, P. Phylogenetic relationships and evolutionary traits in Ranunculus s.l. (Ranunculaceae) inferred from ITS sequence analysis. Molec. Phylogen. Evol. 2005, 36, 305–327. [Google Scholar] [CrossRef] [PubMed]
- Paun, O.; Lehnebach, C.; Johansson, J.T.; Lockhart, P.; Hörandl, E. Phylogenetic relationships and biogeography of Ranunculus and allied genera (Ranunculaceae) in the Mediterranean region and in the European alpine system. Taxon 2005, 54, 911–930. [Google Scholar] [CrossRef]
- Hoot, S.B.; Kramer, J.; Arroyo, M.T.K. Phylogeny position of the South American dioecious genus Hamadryas and related Ranunculeae (Ranunculaceae). Int. J. Plant Sci. 2008, 169, 433–443. [Google Scholar] [CrossRef]
- Prantl, K. Beiträge zur Morphologie und Systematik der Ranunculaceen. Bot. Jahrb. Syst. 1887, 9, 225–273. [Google Scholar]
- De Candolle, A. Prodromus Systematis Naturalis Regni Vegetabilis; Treuttel et Würtz: Paris, France, 1824. [Google Scholar]
- Benson, L. A treatise on the North American Ranunculi; The University of Notre Dame: South Bend, IN, USA, 1948; pp. 1–264. [Google Scholar]
- Tamura, M. Morphology, ecology and phylogeny of the Ranunculaceae 7. Sci. Rep. Osaka Univ. 1967, 16, 21–43. [Google Scholar]
- Hörandl, E.; Emadzade, K. The evolution and biogeography of alpine species in Ranunculus (Ranunculaceae): A global comparison. Taxon 2011, 60, 415–426. [Google Scholar] [CrossRef]
- Hörandl, E.; Emadzade, K. Evolutionary classification: A case study on the diverse plant genus Ranunculus L.(Ranunculaceae). Perspect. Plant Ecol. Evol. Syst. 2012, 14, 310–324. [Google Scholar] [CrossRef]
- Hörandl, E. Nothing in taxonomy makes sense except in the light of evolution: Examples from the classification of Ranunculus. Ann. Mo. Bot. Gard. 2014, 100, 14–31. [Google Scholar] [CrossRef]
- Emadzade, K.; Gehrke, B.; Linder, H.P.; Hörandl, E. The biogeographical history of the cosmopolitan genus Ranunculus L. (Ranunculaceae) in the temperate to meridional zones. Molec. Phylogen. Evol. 2011, 58, 4–21. [Google Scholar] [CrossRef] [PubMed]
- Emadzade, K.; Lebmann, M.J.; Hoffmann, M.H.; Tkach, N.; Lone, F.A.; Hörandl, E. Phylogenetic relationships and evolution of high mountain buttercups (Ranunculus) in North America and Central Asia. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 131–141. [Google Scholar] [CrossRef]
- Baltisberger, M.; Hörandl, E. Karyotype evolution supports the molecular phylogeny in the genus Ranunculus (Ranunculaceae). Perspect. Plant Ecol. Evol. Syst. 2016, 18, 1–14. [Google Scholar] [CrossRef]
- Wang, W.T. A revision of the genus Ranunculus in China (II). Bull. Bot. Res. 1995, 15, 275–329. [Google Scholar]
Tribe | Species | Collecting Site | Voucher Number | GenBank No. |
---|---|---|---|---|
Ranunculeae | Ceratocephala testiculata * | Altay, Xinjiang, China | L. Xie 2016S3 (BJFC) | OR625574 |
Ranunculeae | Ce. testiculata * | Altay, Xinjiang, China | L. Xie 2016S46 (BJFC) | OR625575 |
Ranunculeae | Ranunculus monophyllus * | Altay, Xinjiang, China | L. Xie 2016S2 (BJFC) | OR625578 |
Ranunculeae | R. polyrhizos * | Altay, Xinjiang, China | L. Xie 2016S47 (BJFC) | OR625579 |
Ranunculeae | R. tanguticus * | Daocheng, Sichuan, China | W.H. Li WH072 (BJFC) | OR625580 |
Ranunculeae | R. mongolicus * | Qinghe, Xinjiang, China | C. Shang et al. I-4186 (BJFC) | OR625576 |
Ranunculeae | R. trichophyllus * | Tingri, Xizang, China | W.H. Li DR008 (BJFC) | OR625577 |
Ranunculeae | R. bungei * | Xinglong, Hebei, China | L. Xie et al. PL002 (BJFC) | OR625572 |
Ranunculeae | R. trichophyllus * | Xiangrila, Yunnan, China | L. Xie et al. T-20220808 016 (BJFC) | OR625582 |
Ranunculeae | R. pekinense * | Yanqing, Beijing, China | L. Xie and Y.K. Luo 20200916001 (BJFC) | OR625573 |
Ranunculeae | Halerpestes tricuspis * | Zhongba, Xizang, China | W.H. Li ZB006 (BJFC) | OR625581 |
Anemoneae | Anemoclema glaucifolium | MH205609 | ||
Anemoneae | A. tomentosa | NC_039451 | ||
Anemoneae | Pulsatilla chinensis | NC_039452 | ||
Anemoneae | A. trullifolia | MH205608 | ||
Anemoneae | Clematis brevicaudata | MT796620 | ||
Anemoneae | Cl. terniflora | KJ956785 | ||
Adonideae | Adonis coerulea | MK253469 | ||
Delphinieae | Aconitum barbatum | MK253470 | ||
Ranunculeae | Ce. falcata | MK253464 | ||
Ranunculeae | H. sarmentosa | MK253457 | ||
Ranunculeae | Oxygraphis glacialis | MK253453 | ||
Ranunculeae | R. austro-oreganus | KX639503 | ||
Ranunculeae | R. cantoniensis | NC_045920 | ||
Ranunculeae | R. cassubicifolius | OP250948 | ||
Ranunculeae | R. chinensis | ON500677 | ||
Ranunculeae | R. japonicus | MZ169045 | ||
Ranunculeae | R. macranthus | NC_008796 | ||
Ranunculeae | R. macranthus | DQ359689 | ||
Ranunculeae | R. membranaceus | NC_065303 | ||
Ranunculeae | R. occidentalis | NC_031651 | ||
Ranunculeae | R. reptans | NC_036977 | ||
Ranunculeae | R. sceleratus | MK253452 | ||
Ranunculeae | R. silerifolius | ON462450 | ||
Ranunculeae | R. ternatus | OQ943173 | ||
Ranunculeae | R. yunnanensis | MZ703201 |
Gene Type | Gene Name | ||||
---|---|---|---|---|---|
Ribosomal RNA genes | 16S rRNA | 23S rRNA | 4.5S rRNA | 5S rRNA | |
Transfer RNA genes | trnA-UGC gene | trnC-GCA gene | trnD-GUC gene | trnE-UUC gene | trnF-GAA gene |
trnfM-CAU gene | trnG-GCC gene | trnG-UCC gene | trnH-GUG gene | trnI-CAU gene | |
trnI-GAU gene | trnK-UUU gene | trnL-CAA gene | trnL-UAA gene | trnL-UAG gene | |
trnM-CAU gene | trnN-GUU gene | trnP-UGG gene | trnQ-UUG gene | trnR-ACG gene | |
trnR-UCU gene | trnS-GCU gene | trnS-GGA gene | trnS-UGA gene | trnT-GGU gene | |
trnT-UGU gene | trnV-UAC gene | trnV-GAC gene | trnW-CCA gene | trnY-GUA gene | |
Small subunit of the ribosome | rps2 gene | rps3 gene | rps4 gene | rps7 gene | rps8 gene |
rps11 gene | rps12 gene | rps14 gene | rps15 gene | rps16 gene | |
rps18 gene | rps19 gene | ||||
The large subunit of the ribosome | rpl2 gene | rpl14 gene | rpl16 gene | rpl20 gene | rpl22 gene |
rpl23 gene | rpl32 gene | rpl33 gene | rpl36 gene | ||
RNA polymerase subunits | rpoA gene | rpoB gene | rpoC1 gene | rpoC2 gene | |
NADH dehydrogenase | ndhA gene | ndhB gene | ndhC gene | ndhD gene | ndhE gene |
ndhF gene | ndhG gene | ndhH gene | ndhI gene | ndhJ gene | |
ndhK gene | |||||
Photosystem I | psaA gene | psaB gene | psaC gene | psaI gene | psaJ gene |
Cytochrome b/f complex | petA gene | petB gene | petD gene | petG gene | petL gene |
petN gene | |||||
ATP synthase | atpA gene | atpB gene | atpE gene | atpF gene | atpH gene |
atpI gene | |||||
Large subunit of rubisco | rbcL gene | ||||
Maturase | matK gene | ||||
Protease | clpP gene | ||||
Envelope membrane protein | cemA gene | ||||
Subunit of acetyl-CoA-carboxylase | accD gene | ||||
Photosystem II | psbA gene | psbB gene | psbC gene | psbD gene | psbE gene |
psbF gene | psbH gene | psbI gene | psbJ gene | psbK gene | |
psbL gene | psbM gene | psbN gene | psbT gene | psbZ gene | |
Copper chaperone for superoxide dismutase | ccsA gene | ||||
Conserved open reading frames | Ycf 1,2,3,4 |
Dataset | Partitioning Strategy | Parameters | Subsets | ln L | BIC |
---|---|---|---|---|---|
Complete Plastome Dataset | No partition | 63 | 1 | −492,025.19 | 984,804.90 |
Coding and non-coding | 74 | 2 | −600,890.34 | 1,202,691.59 | |
LSC, SSC, IRs | 85 | 3 | −489,387.16 | 979,792.32 | |
By gene | 162 | 11 | −710,387.28 | 1,422,765.77 | |
By gene and codon position | 219 | 17 | −708,937.30 | 1,420,566.42 | |
By the third codon position | 84 | 3 | −802,253.60 | 1,605,550.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, J.; Luo, Y.; Pei, L.; Li, M.; Xiao, J.; Li, W.; Wu, H.; Luo, Y.; He, J.; Cheng, J.; et al. Complete Plastid Genomes of Nine Species of Ranunculeae (Ranunculaceae) and Their Phylogenetic Inferences. Genes 2023, 14, 2140. https://doi.org/10.3390/genes14122140
Ji J, Luo Y, Pei L, Li M, Xiao J, Li W, Wu H, Luo Y, He J, Cheng J, et al. Complete Plastid Genomes of Nine Species of Ranunculeae (Ranunculaceae) and Their Phylogenetic Inferences. Genes. 2023; 14(12):2140. https://doi.org/10.3390/genes14122140
Chicago/Turabian StyleJi, Jiaxin, Yike Luo, Linying Pei, Mingyang Li, Jiamin Xiao, Wenhe Li, Huanyu Wu, Yuexin Luo, Jian He, Jin Cheng, and et al. 2023. "Complete Plastid Genomes of Nine Species of Ranunculeae (Ranunculaceae) and Their Phylogenetic Inferences" Genes 14, no. 12: 2140. https://doi.org/10.3390/genes14122140