Three-Dimensional Organization of Chicken Genome Provides Insights into Genetic Adaptation to Extreme Environments
<p>Hi-C contact heatmaps of liver cells in LDC (<b>A</b>) and WCC (<b>B</b>). The color of each dot on the heatmaps represents the log of the interaction probability for the corresponding pair of genomic loci according to standard JuiceBox color scheme.</p> "> Figure 2
<p>Association between A/B compartment switches and gene expression. (<b>A</b>) Distribution of the A/B compartments in the whole genome of two liver cells. A compartments are shown in orange, B compartments are shown in blue. The diff means the absolute difference between the PC1 value of two Hi-C data, and the value greater than 0 are shown in red, less than 0 are shown in green. (<b>B</b>) Genome-wide proportions of A/B compartment changes in the whole genome of two liver cells. Gene numbers (<b>C</b>,<b>E</b>) and expression (<b>D</b>,<b>F</b>) volume map of A/B compartments in the whole genome of LDC and WCC liver cells.</p> "> Figure 3
<p>Distribution of topologically associated domains (TADs) on chromosome.</p> "> Figure 4
<p>Enrichment analysis of switched compartmental genes (SCGs) in 5% switched A/B compartments between LDC and WCC liver cells. (<b>A</b>) GO enrichment analysis. The 30 most common GO terms are presented. (<b>B</b>) KEGG enrichment analysis. The 20 most common KEGG pathways are presented. The <span class="html-italic">y</span>-axis and <span class="html-italic">x</span>-axis indicate pathway name and rich factor, respectively. The size of the circle dot means gene number.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Sequencing Using Hi-C
2.2. Mapping and Filtering of Hi-C Read and Contact Matrices Generation
2.3. Identification of Compartment A/B
2.4. Generation of Interchromosomal Contact Matrix
2.5. Identification of TADs and TAD Boundaries
2.6. Boundary Correlation Experiments
2.7. Transcriptome Sequencing and Analysis
2.8. Enrichment Analysis
3. Results
3.1. An Integrated Map of Chromosomal Interfaces in Chicken Liver Cell Nuclei
3.2. Identification and Characterization of Compartments in Chicken Liver Cells
3.3. Enrichment Analysis of SCGs in Switched A/B Compartments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miao, Y.-W.; Peng, M.-S.; Wu, G.-S.; Ouyang, Y.-N.; Yang, Z.-Y.; Yu, N.; Liang, J.-P.; Pianchou, G.; Beja-Pereira, A.; Mitra, B.; et al. Chicken domestication: An updated perspective based on mitochondrial genomes. Heredity 2012, 110, 277–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, G.; Fuller, D.Q. The Evolution of Animal Domestication. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 115–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-S.; Thakur, M.; Peng, M.-S.; Jiang, Y.; Frantz, L.A.F.; Li, M.; Zhang, J.-J.; Wang, S.; Peters, J.; Otecko, N.O.; et al. Author Correction: 863 genomes reveal the origin and domestication of chicken. Cell Res. 2020, 30, 824–825. [Google Scholar] [CrossRef]
- Lawal, R.A.; Al-Atiyat, R.M.; Aljumaah, R.S.; Pradeepa, S.; Mwacharo, J.M.; Olivier, H. Whole-Genome Resequencing of Red Junglefowl and Indigenous Village Chicken Reveal New Insights on the Genome Dynamics of the Species. Front Genet. 2018, 9, 264–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, L.; Georges, M. Domestic-animal genomics: Deciphering the genetics of complex traits. Nat. Rev. Genet. 2004, 5, 202–212. [Google Scholar] [CrossRef]
- Li, M.; Sun, C.; Xu, N.; Bian, P.; Tian, X.; Wang, X.; Wang, Y.; Jia, X.; Heller, R.; Wang, M.; et al. De Novo Assembly of 20 Chicken Genomes Reveals the Undetectable Phenomenon for Thousands of Core Genes on Microchromosomes and Subtelomeric Regions. Mol. Biol. Evol. 2022, 39, msac066. [Google Scholar] [CrossRef]
- Wang, M.S.; Li, Y.; Peng, M.S.; Zhong, L.; Wang, Z.J.; Li, Q.Y.; Tu, X.-L.; Dong, Y.; Zhu, C.-L.; Wang, L.; et al. Genomic Analyses Reveal Potential Independent Adaptation to High Altitude in Tibetan Chickens. Mol. Biol. Evol. 2015, 32, 1880–1889. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, H.; Bai, L.; Yang, C.; Li, Q.; Li, X.; Qiu, M.; Yu, C.; Jiang, Z.; Jiang, X.; et al. Whole genome bisulfite sequencing reveals unique adaptations to high-altitude environments in Tibetan chickens. PLoS ONE 2018, 13, e0193597. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Zhou, X.; Phuntsok, T.; Zhao, N.; Zhang, D.; Ning, C.; Li, D.; Zhao, H. Genomic Analyses Reveal Genetic Adaptations to Tropical Climates in Chickens. Iscience 2020, 23, 101644–101658. [Google Scholar] [CrossRef]
- Fleming, D.S.; Weigend, S.; Simianer, H.; Weigend, A.; Rothschild, M.; Schmidt, C.; Ashwell, C.; Persia, M.; Reecy, J.; Lamont, S.J. Genomic Comparison of Indigenous African and Northern European Chickens Reveals Putative Mechanisms of Stress Tolerance Related to Environmental Selection Pressure. G3 Genes|Genomes|Genetics 2017, 7, 1525–1537. [Google Scholar] [CrossRef]
- Lieberman-Aiden, E.; Van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B.R.; Sabo, P.J.; Dorschner, M.O.; et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 2009, 326, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Battulin, N.R.; Fishman, V.S.; Mazur, A.M.; Pomaznoy, M.; Khabarova, A.A.; Afonnikov, D.A.; Prokhortchouk, E.B.; Serov, O.L. Comparison of the 3D organization of sperm and fibroblast genomes using the Hi-C approach. Genome Biol. 2015, 16, 77. [Google Scholar]
- Fishman, V.; Battulin, N.; Nuriddinov, M.; Maslova, A.; Zlotina, A.; Strunov, A.; Chervyakova, D.; Korablev, A.; Serov, O.; Krasikova, A. 3D organization of chicken genome demonstrates evolutionary conservation of topologically associated domains and highlights unique architecture of erythrocytes’ chromatin. Nucleic Acids Res. 2019, 47, 648–665. [Google Scholar] [CrossRef] [Green Version]
- Barutcu, A.R.; Lajoie, B.R.; McCord, R.P.; Tye, C.E.; Hong, D.; Messier, T.L.; Browne, G.; van Wijnen, A.J.; Lian, J.B.; Stein, J.L.; et al. Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biol. 2015, 16, 214. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; An, H.; Xu, F.; Zhang, X. Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome. GigaScience 2020, 9, giaa015. [Google Scholar] [CrossRef] [Green Version]
- Steven, W.; Philip, E.; Mayra, F.M.; Takashi, N.; Stefan, S.; Peter, F.; Andrews, S. HiCUP: Pipeline for mapping and processing Hi-C data. F1000research 2015, 4, 1310–1316. [Google Scholar]
- Yaffe, E.; Tanay, A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 2011, 43, 1059–1065. [Google Scholar] [CrossRef]
- Rao, S.S.P.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.; Machol, I.; Omer, A.D.; Lander, E.S.; et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell 2014, 159, 1665–1680. [Google Scholar] [CrossRef] [Green Version]
- Ryba, T.; Hiratani, I.; Lu, J.; Itoh, M.; Kulik, M.; Zhang, J.; Schulz, T.C.; Robins, A.J.; Dalton, S.; Gilbert, D.M. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 2010, 20, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.-Z.; Li, T.; Li, R.; Jia, L.; Zhu, P.; Liu, Y.; Chen, Q.; Tang, D.; Yu, Y.; Li, C. 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat. Commun. 2017, 8, 1937–1947. [Google Scholar] [CrossRef] [Green Version]
- Servant, N.; Varoquaux, N.; Lajoie, B.R.; Viara, E.; Chen, C.-J.; Vert, J.-P.; Heard, E.; Dekker, J.; Barillot, E. HiC-Pro: An optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015, 16, 259. [Google Scholar] [CrossRef] [Green Version]
- Dixon, J.R.; Selvaraj, S.; Yue, F.; Kim, A.; Li, Y.; Shen, Y.; Hu, M.; Liu, J.S.; Ren, B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485, 376–380. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.-Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39 (Suppl. S2), W316–W322. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wei, W.; An, S.; Jiang, J.; He, J.; Zhang, H.; Wang, G.; Han, J.; Liang, B.; Ye, L.; et al. Identification and analysis of lncRNA, microRNA and mRNA expression profiles and construction of ceRNA network in Talaromyces marneffei-infected THP-1 macrophage. PeerJ 2021, 9, e10529. [Google Scholar] [CrossRef]
- Wang, M.; Wang, P.; Lin, M.; Ye, Z.; Li, G.; Tu, L.; Shen, C.; Li, J.; Yang, Q.; Zhang, X. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat. Plants 2018, 4, 90–97. [Google Scholar] [CrossRef]
- Su, Y.; Long, Y.; Liao, X.; Ai, H.; Zhang, Z.; Yang, B.; Xiao, S.; Tang, J.; Xin, W.; Huang, L.; et al. Detection of genomic signatures for pig hairlessness using high-density SNP data. Front. Agric. Sci. Eng. 2014, 1, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Dado-Senn, B.; Skibiel, A.L.; Fabris, T.F.; Zhang, Y.; Dahl, G.E.; Peñagaricano, F.; Laporta, J. RNA-Seq reveals novel genes and pathways involved in bovine mammary involution during the dry period and under environmental heat stress. Sci. Rep. 2018, 8, 11096. [Google Scholar] [CrossRef] [Green Version]
- Ishida, T.; Hijioka, H.; Kume, K.; Miyawaki, A.; Nakamura, N. Notch signaling induces EMT in OSCC cell lines in a hypoxic environment. Oncol. Lett. 2013, 6, 1201–1206. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Han, K.R.; Kim, W.; Jung, H.Y.; Nam, S.M.; Yoo, D.Y.; Hwang, I.K.; Seong, J.K.; Yoon, Y.S. Adult Hippocampal Neurogenesis Can Be Enhanced by Cold Challenge Independently From Beigeing Effects. Front. Neurosci. 2019, 13, 92. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, F.; Pan, C.; Lou, Y.; Zhang, P.; Guo, S.-C.; Yin, J.; Deng, Z. Effects of low temperatures on proliferation-related signaling pathways in the hippocampus after traumatic brain injury. Exp. Biol. Med. 2012, 237, 1424–1432. [Google Scholar] [CrossRef]
- Cardona, A.; Pagani, L.; Antao, T.; Lawson, D.J.; Eichstaedt, C.A.; Yngvadottir, B.; Shwe, M.T.T.; Wee, J.; Romero, I.G.; Raj, S.; et al. Genome-Wide Analysis of Cold Adaptation in Indigenous Siberian Populations. PLoS ONE 2014, 9, e98076. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, H.; Li, R.; Li, X.; Xu, Y.; Dai, X.; Zhou, Y.; Wang, H. Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects. BMC Genom. 2017, 18, 974–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Jiao, L.; Liu, R.; Zhang, Y.; Ji, Q.; Zhang, H.; Gao, X.; Ma, Y.; Shi, H.N. The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice. PLoS ONE 2018, 13, e0203701. [Google Scholar] [CrossRef] [PubMed]
- Tjong, H.; Li, W.; Kalhor, R.; Dai, C.; Hao, S.; Gong, K.; Zhou, Y.; Li, H.; Zhou, X.J.; Le Gros, M.A.; et al. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization. Proc. Natl. Acad. Sci. USA 2016, 113, E1663–E1672. [Google Scholar] [CrossRef] [Green Version]
- Beagrie, R.A.; Scialdone, A.; Schueler, M.; Kraemer, D.C.A.; Chotalia, M.; Xie, S.Q.; Barbieri, M.; de Santiago, I.; Lavitas, L.-M.; Branco, M.R.; et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 2017, 543, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Franke, M.; Ibrahim, D.M.; Andrey, G.; Schwarzer, W.; Heinrich, V.; Schöpflin, R.; Kraft, K.; Kempfer, R.; Jerković, I.; Chan, W.-L.; et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 2016, 538, 265–269. [Google Scholar] [CrossRef]
- Elbetagy, A.R.; Bertolini, F.; Fleming, D.S.; Van Goor, A.G.; Schmidt, C.; Lamont, S.J.; Rothschild, M.F. Natural Selection Footprints Among African Chicken Breeds and Village Ecotypes. Front Genet. 2019, 10, 376–391. [Google Scholar] [CrossRef] [Green Version]
- Taberlay, P.C.; Achinger-Kawecka, J.; Lun, A.T.; Buske, F.A.; Sabir, K.; Gould, C.M.; Zotenko, E.; Bert, S.A.; Giles, K.A.; Bauer, D.C.; et al. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 2016, 26, 719–731. [Google Scholar] [CrossRef] [Green Version]
- Rafique, S.; Thomas, J.S.; Sproul, D.; Bickmore, W.A. Estrogen-induced chromatin decondensation and nuclear re-organization linked to regional epigenetic regulation in breast cancer. Genome Biol. 2015, 16, 145. [Google Scholar] [CrossRef] [Green Version]
- Dixon, J.R.; Jung, I.; Selvaraj, S.; Shen, Y.; Antosiewicz-Bourget, J.E.; Lee, A.Y.; Ye, Z.; Kim, A.; Rajagopal, N.; Xie, W.; et al. Chromatin architecture reorganization during stem cell differentiation. Nature 2015, 518, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Luger, D.; Shinder, D.; Wolfenson, D.; Yahav, S. Erythropoiesis regulation during the development of ascites syndrome in broiler chickens: A possible role of corticosterone. J. Anim. Sci. 2003, 81, 784–790. [Google Scholar] [CrossRef]
- Lindsey, B.W.; Tropepe, V. Changes in the social environment induce neurogenic plasticity predominantly in niches residing in sensory structures of the zebrafish brain independently of cortisol levels. Dev. Neurobiol. 2014, 74, 1053–1077. [Google Scholar] [CrossRef]
- Walsh, M.P. Calmodulin and the regulation of smooth muscle contraction. Mol. Cell. Biochem. 1994, 135, 21–41. [Google Scholar] [CrossRef]
- Takashima, S. Phosphorylation of Myosin Regulatory Light Chain by Myosin Light Chain Kinase, and Muscle Contraction. Circ. J. 2009, 73, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Pasha, M.Q.; Pandey, P.; Mohammad, G.; Singh, Y. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation. Appl. Clin. Genet. 2015, 8, 257–267. [Google Scholar] [CrossRef]
Term | Count | Enriched Genes * | p-Value |
---|---|---|---|
Tight junction | 9 | EXOC3, PRKCQ, AMOTL1, CTTN, TJAP1, CLDN16, CLDN1, PRKCH, GNAI2 | 0.00066 |
Notch signaling pathway | 4 | MAML2, ADAM17, JAG2, DTX3L | 0.00192 |
Vascular smooth muscle contraction | 8 | ADCY5, MYLK, KCNMB1, PRKCQ, PRKCH, ROCK2, MYLK4, GUCY1A2 | 0.02457 |
RIG-I-like receptor signaling pathway | 4 | IFNK, IL8, MAP3K1, FADD | 0.03433 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, D.; Yang, Y.; Shi, S.; Tong, H. Three-Dimensional Organization of Chicken Genome Provides Insights into Genetic Adaptation to Extreme Environments. Genes 2022, 13, 2317. https://doi.org/10.3390/genes13122317
Shao D, Yang Y, Shi S, Tong H. Three-Dimensional Organization of Chicken Genome Provides Insights into Genetic Adaptation to Extreme Environments. Genes. 2022; 13(12):2317. https://doi.org/10.3390/genes13122317
Chicago/Turabian StyleShao, Dan, Yu Yang, Shourong Shi, and Haibing Tong. 2022. "Three-Dimensional Organization of Chicken Genome Provides Insights into Genetic Adaptation to Extreme Environments" Genes 13, no. 12: 2317. https://doi.org/10.3390/genes13122317
APA StyleShao, D., Yang, Y., Shi, S., & Tong, H. (2022). Three-Dimensional Organization of Chicken Genome Provides Insights into Genetic Adaptation to Extreme Environments. Genes, 13(12), 2317. https://doi.org/10.3390/genes13122317