Pathogenic Mitochondria DNA Mutations: Current Detection Tools and Interventions
<p>Mitochondrial DNA (mtDNA) mutations reported in different types of diseases. Mitochondrial genome diagram and common mutations reported in human diseases. Mutations are depicted by locations of mutated base, and the single large-scale deletions are shown in the center of the genome. (C: cytosine, G: guanine, T: thymine, A: adenine, ins: insertion, del: deletion). The D-loop, a non-coding region; ND1, reduced nicotinamide adenine dinucleotide (NADH) ubiquinone oxidoreductase chain 1; ND2, NADH ubiquinone oxidoreductase chain 2; COX I, cytochrome oxidase I; COX II, cytochrome oxidase II; ATP 8, ATP synthase 8; ATP 6, ATP synthase 6; COX III, cytochrome oxidase III; ND3, NADH dehydrogenase 3; ND4L, NADH ubiquinone oxidoreductase chain 4L; ND4, NADH dehydrogenase 4; ND5, NADH dehydrogenase 5; ND6, NADH dehydrogenase 6; CYB, cytochrome b.</p> "> Figure 2
<p>Advances in the past decade in manipulating mitochondria genetic content.</p> ">
Abstract
:1. Mitochondria as the Energy Source in Cells
2. Genetics Insight of Mitochondria
3. MtDNA Diseases
3.1. Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes (MELAS)
3.2. Myoclonic Epilepsy with Ragged Red Fibers (MERRF)
3.3. Leber Heridetary Optic Neuropathy (LHON)
3.4. Leigh Syndrome
3.5. Other mtDNA Diseases
4. Detection of Mutations in mtDNA
5. MtDNA Intervention
5.1. Artificial Mitochondria Transfer
5.2. Genetic Transfer to the Mitochondria
5.3. MtDNA Gene Editing
6. Mitochondrial Manipulation in Clinics
7. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Availability of Data and Materials
Abbreviations
AAVP | adeno-associated virus and phage |
ATP | adenosine triphosphate |
BNIP3 | Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 |
COX | cytochrome C oxidase |
D-loop | Displacement loop |
DNA | deoxyribonucleic acid |
DS | duplex sequencing |
FUNDC1 | FUN14 domain-containing 1 |
H-strand | heavy strand |
kDa | kilodalton |
L-strand | light strand |
LHON | Leber hereditary optic neuropathy |
LS | Leigh syndrome |
MELAS | mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes |
MERRF | myoclonic epilepsy associated with ragged red fibers |
MID | mitochondrial disorder |
MitoRS | mitochondrial rolling circle amplification and sequencing |
mitoTALEN | mitochondrial targeted transcription activator-like effector nuclease |
mRNA | messenger ribonucleic acid |
MSC | mesenchymal stem cell |
MT-CO3 | mitochondrially encoded cytochrome C oxidase III |
MT-ND5 | mitochondrially encoded NADH ubiquinone oxidoreductase chain 5 |
MT-TF | mitochondrially encoded tRNA phenylalanine |
MT-TK | mitochondrially encoded tRNA lysine |
MT-TL | mitochondrially encoded tRNA leucine; |
MT-TL1 | mitochondrially encoded tRNA leucine 1 |
MT-TP | mitochondrially encoded tRNA proline |
MT-TV | mitochondrially encoded tRNA valine |
mtDNA | mitochondria deoxyribonucleic acid |
mtROS | mitochondria reactive oxygen species |
NADH | reduced nicotinamide adenine dinucleotide |
ND1 | NADH dehydrogenase subunit 1 |
ND4 | NADH dehydrogenase subunit 4 |
ND6 | NADH dehydrogenase subunit 6 |
nDNA | nuclear deoxyribonucleic acid |
NGS | next-generation sequencing |
NIX | Nip3-like protein X |
OXPHOS | oxidative phosphorylation |
PCR | polymerase chain reaction |
PF-68 | pluronic F-68 |
PNA | peptide nucleic acid |
POLG | polymerase gamma |
POLG2 | polymerase subunit gamma-2 |
POLRMT | polymerase ribonucleic acid mitochondrial |
RCA | rolling circle amplification |
RNA | ribonucleic acid |
ROS | reactive oxygen species |
rRNA | ribosomal ribonucleic acid |
TFAM | transcription factor A, mitochondrial |
TFB1M | transcription factor B1, mitochondrial |
TFB2M | transcription factor B2, mitochondrial |
TIM | translocase inner membrane |
TOM | translocase outer membrane |
tRNA | transfer ribonucleic acid |
ZFN | zinc finger nuclease |
References
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Nissanka, N.; Moraes, C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018, 592, 728–742. [Google Scholar] [CrossRef]
- Youle, R.J.; van der Bliek, A.M. Mitochondrial Fission, Fusion, and Stress. Science 2012, 337, 1062–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chourasia, A.H.; Boland, M.L.; Macleod, K.F. Mitophagy and cancer. Cancer Metab. 2015, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spelbrink, J.N. Functional organization of mammalian mitochondrial DNA in nucleoids: History, recent developments, and future challenges. IUBMB Life 2010, 62, 19–32. [Google Scholar] [CrossRef]
- Burger, G.; Gray, M.W.; Franz Lang, B. Mitochondrial genomes: Anything goes. Trends Genet. 2003, 19, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]
- Shi, Y.; Dierckx, A.; Wanrooij, P.H.; Wanrooij, S.; Larsson, N.-G.; Wilhelmsson, L.M.; Falkenberg, M.; Gustafsson, C.M. Mammalian transcription factor A is a core component of the mitochondrial transcription machinery. Proc. Natl. Acad. Sci. USA 2012, 109, 16510–16515. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Silva, P.; Enriquez, J.A.; Montoya, J. Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol. 2003, 88, 41–56. [Google Scholar] [CrossRef]
- García-Gómez, S.; Reyes, A.; Martínez-Jiménez, M.I.; Chocrón, E.S.; Mourón, S.; Terrados, G.; Powell, C.; Salido, E.; Méndez, J.; Holt, I.J.; et al. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell 2013, 52, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Li, X.; Owens, K.M.; Vanniarajan, A.; Liang, P.; Singh, K.K. Human REV3 DNA polymerase zeta localizes to mitochondria and protects the mitochondrial genome. PLoS ONE 2015, 10, e0140409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hance, N.; Ekstrand, M.I.; Trifunovic, A. Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum. Mol. Genet. 2005, 14, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Falkenberg, M. Mitochondrial DNA replication in mammalian cells: Overview of the pathway. Essays Biochem. 2018, 62, 287–296. [Google Scholar]
- Xiao, D.; Powolny, A.A.; Moura, M.B.; Kelley, E.E.; Bommareddy, A.; Kim, S.H.; Hahm, E.R.; Normolle, D.; Van Houten, B.; Singh, S.V. Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J. Biol. Chem. 2010, 285, 26558–26569. [Google Scholar] [CrossRef] [Green Version]
- Dunham-Snary, K.J.; Ballinger, S.W. Mitochondrial-nuclear DNA mismatch matters. Science (80-.) 2015, 349, 1449–1450. [Google Scholar] [CrossRef] [PubMed]
- Gorman, G.S.; Schaefer, A.M.; Ng, Y.; Gomez, N.; Blakely, E.L.; Alston, C.L.; Feeney, C.; Horvath, R.; Yu-Wai-Man, P.; Chinnery, P.F.; et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 2015, 77, 753–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craven, L.; Alston, C.L.; Taylor, R.W.; Turnbull, D.M. Recent advances in mitochondrial disease. Annu. Rev. Genomics Hum. Genet. 2017, 18, 257–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vafai, S.B.; Mootha, V.K. Mitochondrial disorders as windows into an ancient organelle. Nature 2012, 491, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Scarpelli, M.; Todeschini, A.; Volonghi, I.; Padovani, A.; Filosto, M. Mitochondrial diseases: Advances and issues. Appl. Clin. Genet. 2017, 10, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Majamaa, K.; Moilanen, J.S.; Uimonen, S.; Remes, A.M.; Salmela, P.I.; Kärppä, M.; Majamaa-Voltti, K.A.M.; Rusanen, H.; Sorri, M.; Peuhkurinen, K.J.; et al. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: Prevalence of the mutation in an adult population. Am. J. Hum. Genet. 1998, 63, 447–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinnery, P.F.; Johnson, M.A.; Wardell, T.M.; Singh-Kler, R.; Hayes, C.; Brown, D.T.; Taylor, R.W.; Bindoff, L.A.; Turnbull, D.M. The epidemiology of pathogenic mitochondrial DNA mutations. Ann. Neurol. 2000, 48, 188–193. [Google Scholar] [CrossRef]
- Man, P.Y.W.; Griffiths, P.G.; Brown, D.T.; Howell, N.; Turnbull, D.M.; Chinnery, P.F. The Epidemiology of leber hereditary optic neuropathy in the north east of England. Am. J. Hum. Genet. 2003, 72, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Spruijt, L.; Kolbach, D.N.; de Coo, R.F.; Plomp, A.S.; Bauer, N.J.; Smeets, H.J.; de Die-Smulders, C.E.M. Influence of mutation type on clinical expression of leber hereditary optic neuropathy. Am. J. Ophthalmol. 2006, 141, 676.e8. [Google Scholar] [CrossRef]
- Puomila, A.; Hämäläinen, P.; Kivioja, S.; Savontaus, M.-L.; Koivumäki, S.; Huoponen, K.; Nikoskelainen, E. Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur. J. Hum. Genet. 2007, 15, 1079–1089. [Google Scholar] [CrossRef]
- Yatsuga, S.; Povalko, N.; Nishioka, J.; Katayama, K.; Kakimoto, N.; Matsuishi, T.; Kakuma, T.; Koga, Y. MELAS: A nationwide prospective cohort study of 96 patients in Japan. Biochim. Biophys. Acta Gen. Subj. 2012, 1820, 619–624. [Google Scholar] [CrossRef]
- El-Hattab, A.W.; Adesina, A.M.; Jones, J.; Scaglia, F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol. Genet. Metab. 2015, 116, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Lorenzoni, P.J.; Werneck, L.C.; Kay, C.S.K.; Silvado, C.E.S.; Scola, R.H. When should MELAS (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes) be the diagnosis? Arq. Neuropsiquiatr. 2015, 73, 959–967. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Le, W.-D. Progress in diagnosing mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Chin. Med. J. (Engl.) 2015, 128, 1820–1825. [Google Scholar] [CrossRef]
- Goto, Y.; Nonaka, I.; Horai, S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990, 348, 651–653. [Google Scholar] [CrossRef]
- Taylor, R.W.; Chinnery, P.F.; Haldane, F.; Morris, A.A.M.; Bindoff, L.A.; Turnbull, D.M.; Wilson, J. MELAS associated with a mutation in the valine transfer RNA gene of mitochondrial DNA. Ann. Neurol. 1996, 40, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, G.; Schon, E.A.; Moraes, C.T.; Bonilla, E.; Berry, G.T.; Sladky, J.T.; Dimauro, S. A new mutation associated with MELAS is located in a mitochondrial DNA polypeptide-coding gene. Neuromuscul. Disord. 1995, 5, 391–398. [Google Scholar] [CrossRef]
- Santorelli, F.M.; Tanji, K.; Kulikova, R.; Shanske, S.; Vilarinho, L.; Hays, A.P.; DiMauro, S. Identification of a novel mutation in the mtDNA ND5 gene associated with MELAS. Biochem. Biophys. Res. Commun. 1997, 238, 326–328. [Google Scholar] [CrossRef]
- Shanske, S.; Coku, J.; Lu, J.; Ganesh, J.; Krishna, S.; Tanji, K.; Bonilla, E.; Naini, A.B.; Hirano, M.; DiMauro, S. The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or leigh syndrome. Arch. Neurol. 2008, 65, 368–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corona, P.; Antozzi, C.; Carrara, F.; D’Incerti, L.; Lamantea, E.; Tiranti, V.; Zeviani, M. A novel mtDNA mutation in the ND5 subunit of complex I in two MELAS patients. Ann. Neurol. 2001, 49, 106–110. [Google Scholar] [CrossRef]
- Liolitsa, D.; Rahman, S.; Benton, S.; Carr, L.J.; Hanna, M.G. Is the mitochondrial complex I ND5 gene a hot-spot for MELAS causing mutations? Ann. Neurol. 2003, 53, 128–132. [Google Scholar] [CrossRef]
- Wallace, D.C. Mitochondrial defects in neurodegenerative disease. Ment. Retard. Dev. Disabil. Res. Rev. 2001, 7, 158–166. [Google Scholar] [CrossRef]
- Mancuso, M.; Petrozzi, L.; Filosto, M.; Nesti, C.; Rocchi, A.; Choub, A.; Pistolesi, S.; Massetani, R.; Fontanini, G.; Siciliano, G. MERRF syndrome without ragged-red fibers: The need for molecular diagnosis. Biochem. Biophys. Res. Commun. 2007, 354, 1058–1060. [Google Scholar] [CrossRef]
- Emmanuele, V.; Silvers, D.S.; Sotiriou, E.; Tanji, K.; DiMauro, S.; Hirano, M. MERRF and Kearns-Sayre overlap syndrome due to the mtDNA m.3291T>C mutation. Muscle Nerve 2011, 44, 448–451. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, H.; Ji, K.; Yan, C. MERRF/MELAS overlap syndrome due to the m.3291T>C mutation. Metab. Brain Dis. 2014, 29, 139–144. [Google Scholar] [CrossRef]
- Hahn, A.; Schänzer, A.; Neubauer, B.A.; Gizewski, E.; Ahting, U.; Rolinski, B. MERRF-Like Phenotype Associated with a Rare Mitochondrial tRNAIle Mutation (m.4284 G>A). Neuropediatrics 2011, 42, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Roy, H.; Qin, D.; Rubio, M.A.T.; Alfonzo, J.D.; Fredrick, K.; Ibba, M. Pathogenic mechanism of a human mitochondrial tRNAPhe mutation associated with myoclonic epilepsy with ragged red fibers syndrome. Proc. Natl. Acad. Sci. USA 2007, 104, 15299–15304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blakely, E.L.; Trip, S.A.; Swalwell, H.; He, L.; Wren, D.R.; Rich, P.; Turnbull, D.M.; Omer, S.E.; Taylor, R.W. A new mitochondrial transfer RNAPro gene mutation associated with myoclonic epilepsy with ragged-red fibers and other neurological features. Arch. Neurol. 2009, 66, 399–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, M. Weighing in on Leber hereditary optic neuropathy: Effects of mitochondrial mass. Brain 2014, 137, 308–309. [Google Scholar] [CrossRef] [Green Version]
- Jankauskaitė, E.; Bartnik, E.; Kodroń, A. Investigating Leber’s hereditary optic neuropathy: Cell models and future perspectives. Mitochondrion 2017, 32, 19–26. [Google Scholar] [CrossRef]
- Cwerman-Thibault, H.; Augustin, S.; Ellouze, S.; Sahel, J.-A.; Corral-Debrinski, M. Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C. R. Biol. 2014, 337, 193–206. [Google Scholar] [CrossRef]
- Gerards, M.; Sallevelt, S.C.E.H.; Smeets, H.J.M. Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol. Genet. Metab. 2016, 117, 300–312. [Google Scholar] [CrossRef]
- Goldstein, A.; Falk, M.J. Mitochondrial DNA Deletion Syndromes; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Farruggia, P.; Di Marco, F.; Dufour, C. Pearson syndrome. Expert Rev. Hematol. 2018, 11, 239–246. [Google Scholar] [CrossRef]
- Schaefer, A.M.; McFarland, R.; Blakely, E.L.; He, L.; Whittaker, R.G.; Taylor, R.W.; Chinnery, P.F.; Turnbull, D.M. Prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 2008, 63, 35–39. [Google Scholar] [CrossRef]
- Pitceathly, R.D.S.; Rahman, S.; Hanna, M.G. Single deletions in mitochondrial DNA—Molecular mechanisms and disease phenotypes in clinical practice. Neuromuscul. Disord. 2012, 22, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Murphy, R.; Turnbull, D.M.; Walker, M.; Hattersley, A.T. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet. Med. 2008, 25, 383–399. [Google Scholar] [CrossRef]
- Heather, J.M.; Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 2016, 107, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Carroll, C.J.; Brilhante, V.; Suomalainen, A. Next-generation sequencing for mitochondrial disorders. Br. J. Pharmacol. 2014, 171, 1837–1853. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, M.W.; Kennedy, S.R.; Salk, J.J.; Fox, E.J.; Hiatt, J.B.; Loeb, L.A. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl. Acad. Sci. USA 2012, 109, 14508–14513. [Google Scholar] [CrossRef] [Green Version]
- Ahn, E.H.; Hirohata, K.; Kohrn, B.F.; Fox, E.J.; Chang, C.-C.; Loeb, L.A. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing. PLoS ONE 2015, 10, e0136216. [Google Scholar] [CrossRef] [Green Version]
- Marquis, J.; Lefebvre, G.; Kourmpetis, Y.A.I.; Kassam, M.; Ronga, F.; De Marchi, U.; Wiederkehr, A.; Descombes, P. MitoRS, a method for high throughput, sensitive, and accurate detection of mitochondrial DNA heteroplasmy. BMC Genomics 2017, 18, 326. [Google Scholar] [CrossRef]
- Caicedo, A.; Aponte, P.M.; Cabrera, F.; Hidalgo, C.; Khoury, M. Artificial Mitochondria Transfer: Current Challenges, Advances, and Future Applications. Stem Cells Int. 2017, 2017, 1–23. [Google Scholar] [CrossRef]
- Herst, P.M.; Dawson, R.H.; Berridge, M.V. Intercellular communication in tumor biology: A role for mitochondrial transfer. Front. Oncol. 2018, 8, 344. [Google Scholar] [CrossRef]
- Kitani, T.; Kami, D.; Matoba, S.; Gojo, S. Internalization of isolated functional mitochondria: Involvement of macropinocytosis. J. Cell. Mol. Med. 2014, 18, 1694–1703. [Google Scholar] [CrossRef]
- Kim, M.J.; Hwang, J.W.; Yun, C.-K.; Lee, Y.; Choi, Y.-S. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci. Rep. 2018, 8, 3330. [Google Scholar] [CrossRef]
- Torsvik, A.; Bjerkvig, R. Mesenchymal stem cell signaling in cancer progression. Cancer Treat. Rev. 2013, 39, 180–188. [Google Scholar] [CrossRef]
- Caicedo, A.; Fritz, V.; Brondello, J.-M.; Ayala, M.; Dennemont, I.; Abdellaoui, N.; de Fraipont, F.; Moisan, A.; Prouteau, C.A.; Boukhaddaoui, H.; et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci. Rep. 2015, 5, 9073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flierl, A.; Jackson, C.; Cottrell, B.; Murdock, D.; Seibel, P.; Wallace, D. Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol. Ther. 2003, 7, 550–557. [Google Scholar] [CrossRef]
- Bonnefoy, N.; Fox, T.D. Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination. Methods Mol Biol. 2007, 372, 153–166. [Google Scholar] [PubMed] [Green Version]
- Remacle, C.; Cardol, P.; Coosemans, N.; Gaisne, M.; Bonnefoy, N. High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc. Natl. Acad. Sci. USA 2006, 103, 4771–4776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minczuk, M.; Papworth, M.A.; Miller, J.C.; Murphy, M.P.; Klug, A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res. 2008, 36, 3926–3938. [Google Scholar] [CrossRef] [Green Version]
- Gammage, P.A.; Rorbach, J.; Vincent, A.I.; Rebar, E.J.; Minczuk, M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol. Med. 2014, 6, 458–466. [Google Scholar] [CrossRef]
- Hashimoto, M.; Bacman, S.R.; Peralta, S.; Falk, M.J.; Chomyn, A.; Chan, D.C.; Williams, S.L.; Moraes, C.T. MitoTALEN: A general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol. Ther. 2015, 23, 1592–1599. [Google Scholar] [CrossRef] [Green Version]
- Bacman, S.R.; Kauppila, J.H.K.; Pereira, C.V.; Nissanka, N.; Miranda, M.; Pinto, M.; Williams, S.L.; Larsson, N.-G.; Stewart, J.B.; Moraes, C.T. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 2018, 24, 1696–1700. [Google Scholar] [CrossRef]
- Lehmann, D.; Schubert, K.; Joshi, P.R.; Hardy, S.A.; Tuppen, H.A.L.; Baty, K.; Blakely, E.L.; Bamberg, C.; Zierz, S.; Deschauer, M.; et al. Pathogenic mitochondrial mt-tRNAAla variants are uniquely associated with isolated myopathy. Eur. J. Hum. Genet. 2015, 23, 1735–1738. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Tatay, L.; Hernández-Andreu, J.; Aznar, J. Mitochondrial modification Techniques and ethical issues. J. Clin. Med. 2017, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darnovsky, M. A slippery slope to human germline modification. Nature 2013, 499, 127. [Google Scholar] [CrossRef] [PubMed]
- Craven, L.; Tang, M.-X.; Gorman, G.S.; De Sutter, P.; Heindryckx, B. Novel reproductive technologies to prevent mitochondrial disease. Hum. Reprod. Update 2017, 23, 501–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitalipov, S.; Wolf, D.P. Clinical and ethical implications of mitochondrial gene transfer. Trends Endocrinol. Metab. 2014, 25, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Luce, J. Mitochondrial Replacement Techniques. J. Bioeth. Inq. 2018, 15, 381–392. [Google Scholar] [CrossRef]
- Claiborne, A.B.; English, R.A.; Kahn, J.P. Finding an ethical path forward for mitochondrial replacement. Science (80-.) 2016, 351, 668–670. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Luo, S.; Lu, Z.; Chávez-Badiola, A.; Liu, Z.; Yang, M.; Merhi, Z.; Silber, S.J.; Munné, S.; et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod. Biomed. Online 2017, 34, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, A.M.; Taylor, R.W.; Turnbull, D.M.; Chinnery, P.F. The epidemiology of mitochondrial disorders—past, present and future. Biochim. Biophys. Acta Bioenerg. 2004, 1659, 115–120. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, M.F.; Fakurazi, S.; Abdullah, M.A.; Maniam, S. Pathogenic Mitochondria DNA Mutations: Current Detection Tools and Interventions. Genes 2020, 11, 192. https://doi.org/10.3390/genes11020192
Mustafa MF, Fakurazi S, Abdullah MA, Maniam S. Pathogenic Mitochondria DNA Mutations: Current Detection Tools and Interventions. Genes. 2020; 11(2):192. https://doi.org/10.3390/genes11020192
Chicago/Turabian StyleMustafa, Mohd Fazirul, Sharida Fakurazi, Maizaton Atmadini Abdullah, and Sandra Maniam. 2020. "Pathogenic Mitochondria DNA Mutations: Current Detection Tools and Interventions" Genes 11, no. 2: 192. https://doi.org/10.3390/genes11020192
APA StyleMustafa, M. F., Fakurazi, S., Abdullah, M. A., & Maniam, S. (2020). Pathogenic Mitochondria DNA Mutations: Current Detection Tools and Interventions. Genes, 11(2), 192. https://doi.org/10.3390/genes11020192