Interindividual Variation in Cardiorespiratory Fitness: A Candidate Gene Study in Han Chinese People
<p>Distribution of peak oxygen uptake (VO<sub>2peak</sub>) data in the study participants.</p> "> Figure 2
<p>Variance in peak oxygen uptake in the study participants explained by genetic variants alone (<b>a</b>) and by genetic variants plus anthropometric covariates (<b>b</b>). Abbreviations for gene names: <span class="html-italic">ACE</span>, angiotensin-converting enzyme; <span class="html-italic">AGTR1</span>, angiotensin II receptor type 1; <span class="html-italic">BDKRB2</span>, bradykinin receptor B2; <span class="html-italic">GDF8</span>, growth differentiation factor 8 (also known as ‘myostatin’).</p> "> Figure 3
<p>Box-and-whisker plots showing peak oxygen uptake (VO<sub>2peak</sub>) in the study participants according to genetic variations in the genes for angiotensin-converting enzyme (<span class="html-italic">ACE</span>; rs4295)<span class="html-italic">,</span> angiotensin II receptor type 1 (<span class="html-italic">AGTR1</span>; rs275652), and growth differentiation factor 8 (<span class="html-italic">GDF8,</span> also known as ‘myostatin’; rs7570532). The lines in the box represent the first, second (median) and third quartiles, and the whiskers represent 1.5 × interquartile ranges. Each dot represents one individual within the specified genotype. (*) Depicts a statistically significant difference from CC genotype in <span class="html-italic">ACE</span> rs4295 polymorphism at <span class="html-italic">p</span> < 0.05. (†) Depicts a statistically significant difference from CC genotype in <span class="html-italic">AGTR1</span> rs275652 polymorphism at <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>Peak oxygen uptake (VO<sub>2peak</sub>) levels in the study participants according to the genotype score (computed by using a weighted score of angiotensin-converting enzyme rs4295, angiotensin II receptor type 1 rs275652 and growth differentiation factor 8 rs7570532 genotypes). Abbreviations/symbols: a.u., arbitrary units; a, difference from 0–0.9 a.u. at <span class="html-italic">p</span><0.05; b, difference from 1.0–1.9 a.u. at <span class="html-italic">p</span> < 0.05; c, difference from 2.0–2.9 a.u. at <span class="html-italic">p</span> < 0.05; d, difference from 3.0–3.9 a.u. at <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Protocol
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Gene | SNP | MA | MAF |
---|---|---|---|
ACE | rs4295 | G | 38.1 |
ACE | rs4341 | G | 34.9 |
ACE | rs4363 | G | 38.7 |
ACE2 | rs6632677 | C | 9.2 |
ACSL1 | rs10022018 | G | 24.4 |
ACSL1 | rs11732302 | C | 24.7 |
ACSL1 | rs12503643 | G | 45.9 |
ACSL1 | rs12644905 | T | 19.6 |
ACSL1 | rs13126272 | T | 11.0 |
ACSL1 | rs1803898 | A | 7.3 |
ACSL1 | rs2292898 | C | 7.8 |
ACSL1 | rs13120078 | A | 8.2 |
ACSL1 | rs2280297 | C | 47.6 |
ACSL1 | rs2292899 | A | 38.1 |
ACSL1 | rs3749233 | A | 25.9 |
ACSL1 | rs3792312 | G | 41.7 |
ACSL1 | rs4069938 | G | 37.7 |
ACSL1 | rs6552828 | G | 35.2 |
ACSL1 | rs902177 | C | 28.2 |
ACTN3 | rs1815739 | T | 41.7 |
AGT | rs10864770 | T | 34.5 |
AGT | rs11568046 | C | 12.9 |
AGT | rs2478523 | C | 46.0 |
AGT | rs2478544 | C | 21.8 |
AGT | rs2493132 | T | 37.3 |
AGT | rs3789671 | G | 45.5 |
AGT | rs3789678 | T | 18.7 |
AGT | rs3889728 | A | 49.4 |
AGT | rs5050 | G | 14.8 |
AGT | rs6687360 | C | 33.1 |
AGT | rs699 | T | 19.7 |
AGT | rs7079 | A | 16.2 |
AGT | rs7536290 | G | 22.0 |
AGTR1 | rs2131127 | T | 37.4 |
AGTR1 | rs275652 | C | 13.6 |
AGTR1 | rs3772616 | A | 17.8 |
AGTR1 | rs385338 | G | 18.0 |
AGTR1 | rs5182 | C | 28.1 |
AGTR1 | rs6801836 | C | 14.2 |
BDKRB2 | rs10130005 | C | 18.3 |
BDKRB2 | rs10132462 | T | 28.1 |
BDKRB2 | rs11160322 | C | 23.0 |
BDKRB2 | rs11627176 | G | 12.0 |
BDKRB2 | rs11627761 | T | 15.3 |
BDKRB2 | rs11848502 | T | 30.1 |
BDKRB2 | rs12433275 | T | 16.3 |
BDKRB2 | rs12888402 | C | 16.7 |
BDKRB2 | rs1799722 | C | 48.0 |
BDKRB2 | rs1959053 | T | 25.3 |
BDKRB2 | rs2069575 | A | 20.4 |
BDKRB2 | rs2069578 | G | 39.1 |
BDKRB2 | rs2069586 | A | 16.5 |
BDKRB2 | rs2069588 | T | 18.0 |
BDKRB2 | rs2369521 | G | 35.6 |
BDKRB2 | rs4144131 | A | 43.9 |
BDKRB2 | rs4900315 | C | 46.5 |
BDKRB2 | rs4900318 | A | 49.7 |
BDKRB2 | rs4905470 | A | 20.0 |
BDKRB2 | rs4905474 | A | 37.1 |
BDKRB2 | rs6575577 | G | 22.5 |
BDKRB2 | rs7155797 | T | 44.4 |
BDKRB2 | rs7161665 | C | 47.9 |
BDKRB2 | rs8013400 | T | 28.5 |
BDKRB2 | rs8016905 | A | 32.7 |
BDKRB2 | rs885818 | T | 13.4 |
BDKRB2 | rs945039 | T | 42.9 |
FGFR2 | rs2071616 | T | 8.8 |
FNDC5 | rs16835198 | T | 47.7 |
FNDC5 | rs3480 | G | 24.8 |
FST | rs3797296 | G | 17.3 |
FST | rs3797297 | T | 12.8 |
FTO | rs1421085 | C | 10.4 |
FTO | rs1558902 | A | 10.6 |
FTO | rs9939609 | A | 10.4 |
GDF-8 | rs16832288 | A | 19.9 |
GDF-8 | rs7570532 | G | 26.0 |
IL-15 | rs1057972 | A | 49.9 |
IL-6 | rs1524107 | C | 29.3 |
IL-6 | rs2069840 | G | 7.3 |
IL-6 | rs2069830 | G | 27.2 |
IL-6 | rs2069837 | G | 20.1 |
IL-6 | rs2069852 | G | 37.0 |
ITLN1 | rs2274906 | A | 36.5 |
ITLN1 | rs2274910 | T | 29.6 |
ITLN1 | rs2297560 | T | 13.9 |
ITLN1 | rs6427552 | C | 24.7 |
PGC-1α | rs12374310 | C | 43.9 |
PGC-1α | rs12650562 | C | 49.5 |
PGC-1α | rs251468 | T | 19.8 |
PGC-1α | rs4452416 | G | 13.4 |
PGC-1α | rs4697425 | G | 30.8 |
PGC-1α | rs6821591 | C | 29.9 |
PRDM16 | rs12409277 | C | 42.0 |
PRDM16 | rs2236518 | A | 44.5 |
PYY | rs10853114 | C | 37.8 |
PYY | rs12953033 | A | 6.9 |
PYY | rs162430 | G | 35.3 |
PYY | rs1859223 | G | 27.2 |
REN | rs11571078 | T | 12.7 |
REN | rs1464816 | T | 24.4 |
REN | rs2368564 | T | 20.3 |
REN | rs4951313 | G | 29.1 |
REN | rs5707 | G | 40.3 |
RETN | rs3745367 | A | 35.5 |
Appendix B
Gene | SNP | MA | MAF |
---|---|---|---|
ACE2 | rs2074192 | T | 42.6 |
ACE2 | rs6632677 | C | 9.2 |
AGTR1 | rs12721241 | A | 12.0 |
AGTR1 | rs2675511 | G | 13.9 |
AGTR2 | rs5193 | T | 15.9 |
AGTR2 | rs12840631 | G | 18.1 |
AGTR2 | rs6608590 | T | 41.6 |
BDKRB2 | rs4900313 | A | 16.2 |
PGC1β | rs17110586 | G | 14.8 |
PRC | rs17114388 | G | 19.7 |
Gene | SNP | MA | MAF |
---|---|---|---|
FGF21 | rs838133 | A | 1.1 |
FGF21 | rs838145 | G | 1.3 |
FNDC5 | rs726344 | A | 0.2 |
FST | rs12152850 | T | 1.6 |
GDF-8 | rs1805086 | C | 0.2 |
GDF-8 | rs3791784 | G | 2.3 |
IL-6 | rs1800795 | C | 0.7 |
IL-15 | rs1589241 | T | 0.8 |
IL-6 | rs1554606 | T | 1.8 |
ITLN1 | rs11265509 | T | 4.7 |
Gene | SNP | Genotype |
---|---|---|
AGTR1 | rs12721276 | CC |
PYY | rs432747 | GG |
References
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Landolfo, C.; Niebauer, J.; Ozemek, C.; Arena, R.; Lavie, C.J. Promoting Physical Activity and Exercise: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 1622–1639. [Google Scholar] [CrossRef]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef]
- Lavie, C.J.; Carbone, S.; Kachur, S.; O’keefe, E.L.; Elagizi, A. Effects of Physical Activity, Exercise, and Fitness on Obesity-Related Morbidity and Mortality. Curr. Sports Med. Rep. 2019, 18, 292–298. [Google Scholar] [CrossRef]
- Harber, M.P.; Kaminsky, L.A.; Arena, R.; Blair, S.N.; Franklin, B.A.; Myers, J.; Ross, R. Impact of Cardiorespiratory Fitness on All-Cause and Disease-Specific Mortality: Advances Since 2009. Prog. Cardiovasc. Dis. 2017, 60, 11–20. [Google Scholar] [CrossRef]
- Myers, J.; Prakash, M.; Froelicher, V.; Do, D.; Partington, S.; Edwin Atwood, J. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 2002, 346, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Ozemek, C.; Laddu, D.R.; Lavie, C.J.; Claeys, H.; Kaminsky, L.A.; Ross, R.; Wisloff, U.; Arena, R.; Blair, S.N. An Update on the Role of Cardiorespiratory Fitness, Structured Exercise and Lifestyle Physical Activity in Preventing Cardiovascular Disease and Health Risk. Prog. Cardiovasc. Dis. 2018, 61, 484–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenzuela, P.L.; Maffiuletti, N.A.; Joyner, M.J.; Lucia, A.; Lepers, R. Lifelong Endurance Exercise as a Countermeasure Against Age-Related VO2max Decline: Physiological Overview and Insights from Masters Athletes. Sport. Med. 2019, 50. [Google Scholar]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Després, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef]
- Bouchard, C.; Lesage, R.; Lortie, G.; Simoneau, J.A.; Hamel, P.; Boulay, M.R.; Pérusse, L.; Thériault, G.; Leblanc, C. Aerobic performance in brothers, dizygotic and monozygotic twins. Med. Sci. Sports Exerc. 1986, 18, 639–646. [Google Scholar] [CrossRef]
- Bouchard, C.; Warwick Daw, E.; Rice, T.; Pérusse, L.; Gagnon, J.; Province, M.A.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Wilmore, J.H. Familial resemblance for VO(2max) in the sedentary state: The HERITAHE family study. Med. Sci. Sports Exerc. 1998, 30, 252–258. [Google Scholar] [CrossRef]
- Schutte, N.M.; Nederend, I.; Hudziak, J.J.; Bartels, M.; de Geus, E.J.C. Twin-sibling study and meta-analysis on the heritability of maximal oxygen consumption. Physiol. Genomics 2016, 48, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Mustelin, L.; Latvala, A.; Pietiläinen, K.H.; Piirilä, P.; Sovijärvi, A.R.; Kujala, U.M.; Rissanen, A.; Kaprio, J. Associations between sports participation, cardiorespiratory fitness, and adiposity in young adult twins. J. Appl. Physiol. 2011, 110, 681–686. [Google Scholar] [CrossRef]
- Bye, A.; Klevjer, M.; Ryeng, E.; da Silva, G.J.J.; Moreira, J.B.N.; Stensvold, D.; Wisløff, U. Identification of novel genetic variants associated with cardiorespiratory fitness. Prog. Cardiovasc. Dis. 2020. [Google Scholar] [CrossRef]
- Hickson, R.C.; Bomze, H.A.; Holloszy, J.O. Linear increase in aerobic power induced by a strenuous program of endurance exercise. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 42, 372–376. [Google Scholar] [CrossRef]
- Bouchard, C.; Rankinen, T. Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 2001, 33. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, C.; Sarzynski, M.A.; Rice, T.K.; Kraus, W.E.; Church, T.S.; Sung, Y.J.; Rao, D.C.; Rankinen, T. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J. Appl. Physiol. 2011, 110, 1160–1170. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.J.; Williams, M.G.; Eynon, N.; Ashton, K.J.; Little, J.P.; Wisloff, U.; Coombes, J.S. Genes to predict VO2max trainability: A systematic review. BMC Genomics 2017, 18, 831. [Google Scholar] [CrossRef]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef]
- Borg, G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work. Environ. Heal. 1990, 16, 55–58. [Google Scholar] [CrossRef]
- Edvardsen, E.; Hem, E.; Anderssen, S.A. End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: A cross-sectional study. PLoS ONE 2014, 9, e85276. [Google Scholar] [CrossRef] [Green Version]
- Puthucheary, Z.; Skipworth, J.R.A.; Rawal, J.; Loosemore, M.; Van Someren, K.; Montgomery, H.E. The ACE gene and human performance: 12 Years on. Sport. Med. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhang, P.; Zhou, X.M.; Liu, D.; Zhong, J.C.; Zhang, C.J.; Jin, L.J.; Yu, H.M. Relationship between genetic variants of ACE2 gene and circulating levels of ACE2 and its metabolites. J. Clin. Pharm. Ther. 2018, 43, 189–195. [Google Scholar] [CrossRef]
- Wang, S.; Fu, C.; Zou, Y.; Wang, H.; Shi, Y.; Xu, X.; Chen, J.; Song, X.; Huan, T.; Hui, R. Polymorphisms of angiotensin-converting enzyme 2 gene associated with magnitude of left ventricular hypertrophy in male patients with hypertrophic cardiomyopathy. Chin. Med. J. (Engl). 2008, 121, 27–31. [Google Scholar] [CrossRef]
- Yvert, T.; He, Z.-H.; Santiago, C.; Hu, Y.; Li, Y.-C.; Gómez-Gallego, F.; Fiuza-Luces, C.; Verde, Z.; Muniesa, C.A.; Oliván, J.; et al. Acyl coenzyme A synthetase long-chain 1 (ACSL1) gene polymorphism (rs6552828) and elite endurance athletic status: A replication study. PLoS ONE 2012, 7, e41268. [Google Scholar] [CrossRef] [Green Version]
- Del Coso, J.; Hiam, D.; Houweling, P.; Pérez, L.M.; Eynon, N.; Lucía, A. More than a ‘speed gene’: ACTN3 R577X genotype, trainability, muscle damage, and the risk for injuries. Eur. J. Appl. Physiol. 2019, 119, 49–60. [Google Scholar] [CrossRef]
- Del Coso, J.; Moreno, V.; Gutiérrez-Hellín, J.; Baltazar-Martins, G.; Ruíz-Moreno, C.; Aguilar-Navarro, M.; Lara, B.; Lucía, A. ACTN3 R577X genotype and exercise phenotypes in recreational marathon runners. Genes (Basel) 2019, 10, 413. [Google Scholar] [CrossRef] [Green Version]
- Takakura, Y.; Yoshida, T.; Yoshioka, K.; Umekawa, T.; Kogure, A.; Toda, H.; Kagawa, K.; Fukui, S.; Yoshikawa, T. Angiotensinogen gene polymorphism (Met235Thr) influences visceral obesity and insulin resistance in obese Japanese women. Metabolism 2006, 55, 819–824. [Google Scholar] [CrossRef]
- Purkait, P.; Halder, K.; Thakur, S.; Ghosh Roy, A.; Raychaudhuri, P.; Bhattacharya, S.; Sarkar, B.N.; Naidu, J.M. Association of angiotensinogen gene SNPs and haplotypes with risk of hypertension in eastern Indian population. Clin. Hypertens. 2017, 23, 12. [Google Scholar] [CrossRef] [Green Version]
- Rico-Sanz, J.; Rankinen, T.; Rice, T.; Leon, A.S.; Skinner, J.S.; Wilmore, J.H.; Rao, D.C.; Bouchard, C. Quantitative trait loci for maximal exercise capacity phenotypes and their responses to training in the HERITAGE Family Study. Physiol. Genomics 2004, 16, 256–260. [Google Scholar] [CrossRef]
- Carey, R.M.; Siragy, H.M. Newly recognized components of the renin-angiotensin system: Potential roles in cardiovascular and renal regulation. Endocr. Rev. 2003, 24, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Dietze, G.J.; Henriksen, E.J. Angiotensin-converting enzyme in skeletal muscle: Sentinel of blood pressure control and glucose homeostasis. J. Renin. Angiotensin. Aldosterone. Syst. 2008, 9, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Brull, D.; Dhamrait, S.; Myerson, S.; Erdmann, J.; Regitz-Zagrosek, V.; World, M.; Pennell, D.; Humphries, S.E.; Montgomery, H. Bradykinin B2BKR receptor polymorphism and left-ventricular growth response. Lancet 2001, 358, 1155–1156. [Google Scholar] [CrossRef]
- Kaess, B.M.; Barnes, T.A.; Stark, K.; Charchar, F.J.; Waterworth, D.; Song, K.; Wang, W.Y.S.; Vollenweider, P.; Waeber, G.; Mooser, V.; et al. FGF21 signalling pathway and metabolic traits—genetic association analysis. Eur. J. Hum. Genet. 2010, 18, 1344–1348. [Google Scholar] [CrossRef]
- Novelle, M.G.; Contreras, C.; Romero-Picó, A.; López, M.; Diéguez, C. Irisin, two years later. Int. J. Endocrinol. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K. A muscular twist on the fate of fat. N. Engl. J. Med. 2012, 366, 1544–1545. [Google Scholar] [CrossRef]
- Vamvini, M.T.; Aronis, K.N.; Panagiotou, G.; Huh, J.Y.; Chamberland, J.P.; Brinkoetter, M.T.; Petrou, M.; Christophi, C.A.; Kales, S.N.; Christiani, D.C.; et al. Irisin mRNA and circulating levels in relation to other myokines in healthy and morbidly obese humans. Eur. J. Endocrinol. 2013, 169, 829–834. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.L.; Xie, H.J.; Xie, H.Y.; Liu, J.; Yin, J.; Hu, J.S.; Peng, C.Y. Association between fat mass and obesity associated (FTO) gene rs9939609 A/T polymorphism and polycystic ovary syndrome: A systematic review and meta-analysis. BMC Med. Genet. 2017, 18, 89. [Google Scholar] [CrossRef]
- Pan, H.; Ping, X.C.; Zhu, H.J.; Gong, F.Y.; Dong, C.X.; Li, N.S.; Wang, L.J.; Yang, H.B. Association of myostatin gene polymorphisms with obesity in Chinese north Han human subjects. Gene 2012, 494, 237–241. [Google Scholar] [CrossRef]
- Döring, F.; Onur, S.; Kürbitz, C.; Boulay, M.R.; Pérusse, L.; Rankinen, T.; Rauramaa, R.; Wolfarth, B.; Bouchard, C. Single nucleotide polymorphisms in the myostatin (MSTN) and muscle creatine kinase (CKM) genes are not associated with elite endurance performance. Scand. J. Med. Sci. Sport. 2011, 21, 841–845. [Google Scholar] [CrossRef]
- Harvey, N.R.; Voisin, S.; Dunn, P.J.; Sutherland, H.; Yan, X.; Jacques, M.; Papadimitriou, I.D.; Haseler, L.J.; Ashton, K.J.; Haupt, L.M.; et al. Genetic variants associated with exercise performance in both moderately trained and highly trained individuals. Mol. Genet. Genomics 2020, 295, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Riechman, S.E.; Balasekaran, G.; Roth, S.M.; Ferrell, R.E. Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J. Appl. Physiol. 2004, 97, 2214–2219. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.R.; Mounier, R.; Plomgaard, P.; Mortensen, O.H.; Penkowa, M.; Speerschneider, T.; Pilegaard, H.; Pedersen, B.K. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J. Physiol. 2007, 584, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-J.; Slusher, A.L.; Whitehurst, M.; Wells, M.; Maharaj, A.; Shibata, Y. The impact of acute aerobic exercise on chitinase 3-like protein 1 and intelectin-1 expression in obesity. Exp. Biol. Med. 2016, 241, 216–221. [Google Scholar] [CrossRef] [Green Version]
- He, Z.-H.; Hu, Y.; Li, Y.-C.; Gong, L.-J.; Cieszczyk, P.; Maciejewska-Karlowska, A.; Leonska-Duniec, A.; Muniesa, C.A.; Marín-Peiro, M.; Santiago, C.; et al. PGC-related gene variants and elite endurance athletic status in a Chinese cohort: A functional study. Scand. J. Med. Sci. Sports 2015, 25, 184–195. [Google Scholar] [CrossRef]
- Urano, T.; Shiraki, M.; Sasaki, N.; Ouchi, Y.; Inoue, S. Large-scale analysis reveals a functional single-nucleotide polymorphism in the 5’-flanking region of PRDM16 gene associated with lean body mass. Aging Cell 2014, 13, 739–743. [Google Scholar] [CrossRef]
- Schubert, M.M.; Sabapathy, S.; Leveritt, M.; Desbrow, B. Acute exercise and hormones related to appetite regulation: A meta-analysis. Sports Med. 2014, 44, 387–403. [Google Scholar] [CrossRef] [Green Version]
- Gu, D.; Kelly, T.N.; Hixson, J.E.; Chen, J.; Liu, D.; Chen, J.; Rao, D.C.; Mu, J.; Ma, J.; Jaquish, C.E.; et al. Genetic variants in the renin-angiotensin-aldosterone system and salt sensitivity of blood pressure. J. Hypertens. 2010, 28, 1210–1220. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, L.; Weisnagel, S.J.; Engert, J.C.; Hudson, T.J.; Bouchard, C.; Vohl, M.C.; Pérusse, L. Human resistin gene polymorphism is associated with visceral obesity and fasting and oral glucose stimulated C-peptide in the Québec Family Study. J. Endocrinol. Invest. 2004, 27, 1003–1009. [Google Scholar] [CrossRef]
- He, Z.-H.; Hu, Y.; Li, Y.-C.; Yvert, T.; Santiago, C.; Gómez-Gallego, F.; Ruiz, J.R.; Lucia, A. Are calcineurin genes associated with athletic status? A function, replication study. Med. Sci. Sports Exerc. 2011, 43, 1433–1440. [Google Scholar] [CrossRef]
- Williams, A.G.; Folland, J.P. Similarity of polygenic profiles limits the potential for elite human physical performance. J. Physiol. 2008, 586, 113–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA J. Am. Med. Assoc. 2009, 301, 2024–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strasser, B.; Burtscher, M. Survival of the fittest: VO2max, a key predictor of longevity? Front. Biosci. Landmark 2018, 23, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C. DNA Sequence Variations Contribute to Variability in Fitness and Trainability. Med. Sci. Sports Exerc. 2019, 51, 1781–1785. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J. Limits to the Evidence that DNA Sequence Differences Contribute to Variability in Fitness and Trainability. Med. Sci. Sports Exerc. 2019, 51, 1786–1789. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.N.; Joyner, M.J. Physical activity and cardiovascular risk: 10 metabolic equivalents or bust. Mayo Clin. Proc. 2013, 88, 1353–1355. [Google Scholar] [CrossRef]
- Baghai, T.C.; Binder, E.B.; Schule, C.; Salyakina, D.; Eser, D.; Lucae, S.; Zwanzger, P.; Haberger, C.; Zill, P.; Ising, M.; et al. Polymorphisms in the angiotensin-converting enzyme gene are associated with unipolar depression, ACE activity and hypercortisolism. Mol. Psychiatry 2006, 11, 1003–1015. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Yang, Y.; Li, X.; Zhou, F.; Gao, C.; Li, M.; Gao, L. The Association of Sport Performance with ACE and ACTN3 Genetic Polymorphisms: A Systematic Review and Meta-Analysis. PLoS ONE 2013, 8, e54685. [Google Scholar] [CrossRef] [Green Version]
- Orysiak, J.; Zmijewski, P.; Klusiewicz, A.; Kaliszewski, P.; Malczewska-Lenczowska, J.; Gajewski, J.; Pokrywka, A. The association between ace gene variation and aerobic capacity in winter endurance disciplines. Biol. Sport 2013, 30, 249–253. [Google Scholar] [CrossRef]
- Falahati, A.; Arazi, H. Association of ACE gene polymorphism with cardiovascular determinants of trained and untrained Iranian men. Genes Environ. 2019, 41, 8. [Google Scholar] [CrossRef] [Green Version]
- Day, S.H.; Gohlke, P.; Dhamrait, S.S.; Williams, A.G. No correlation between circulating ACE activity and VO2max or mechanical efficiency in women. Eur. J. Appl. Physiol. 2007, 99, 11–18. [Google Scholar] [CrossRef]
- Qi, Y.; Niu, W.; Zhu, T.; Zhou, W.; Qiu, C. Synergistic effect of the genetic polymorphisms of the renin-angiotensin- aldosterone system on high-altitude pulmonary edema: A study from Qinghai-Tibet altitude. Eur. J. Epidemiol. 2008, 23, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Ren, Y.; Zhu, X.; Li, X.; Ouyang, Y.; He, X.; Zhang, Z.; Zhang, Y.; Kang, L.; Yuan, D. Angiotensin II Receptor 1 gene variants are associated with high-altitude pulmonary edema risk. Oncotarget 2016, 7, 77117–77123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrell, N.W.; Morris, K.G.; Stenmark, K.R. Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am. J. Physiol. 1995, 269, H1186–H1194. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.S.; Pinsky, M.R. Heart-lung interactions during mechanical ventilation: The basics. Ann. Transl. Med. 2018, 6, 349. [Google Scholar] [CrossRef] [PubMed]
- McPherron, A.C.; Lawler, A.M.; Lee, S.J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Mondal, H.; Mishra, S.P. Effect of BMI, Body Fat Percentage and Fat Free Mass on Maximal Oxygen Consumption in Healthy Young Adults. J. Clin. Diagnostic Res. 2017, 11, CC17–CC20. [Google Scholar] [CrossRef]
- Miyatani, M.; Kawano, H.; Masani, K.; Gando, Y.; Yamamoto, K.; Tanimoto, M.; Oh, T.; Usui, C.; Sanada, K.; Higuchi, M.; et al. Required muscle mass for preventing lifestyle-related diseases in Japanese women. BMC Public Health 2008, 8, 291. [Google Scholar] [CrossRef] [Green Version]
Gene | Numbers of SNPs | Chromosome Location | References |
---|---|---|---|
ACE | 3 | chr17:58,908,166-58,928,711 | [22] |
ACE2 | 2 | chrX:15,489,077-15,529,058 | [23,24] |
ACSL1 | 15 | chr4: 185,911,544-185,986,209 | [17,25] |
ACTN3 | 1 | chr11:66,313,866-66,330,800 | [26,27] |
AGT | 13 | chr1:228,902,892-228,918,564 | [28,29] |
AGTR1 | 9 | chr3:149,898,348- 149,943,480 | [30,31] |
AGTR2 | 3 | chrX:115,214,031-115,221,847 | [32] |
BDKRB2 | 28 | chr14:95,738,950-95,782,536 | [33] |
FGF21 | 2 | chr19:53,949,156-53,955,394 | [34] |
FGFR2 | 1 | chr10:123,237,848-123,357,972 | [34] |
FNDC5 | 3 | chr1:33,327,869-33,338,083 | [35] |
FST | 3 | chr5: 52,812,352-52,817,659 | [36,37] |
FTO | 3 | chr16:53,737,875-54,155,853 | [38] |
GDF8 | 4 | chr2:190,920,423-190,927,455 | [39,40] |
IL-6 | 7 | chr7:22,733,345-22,738,141 | [41] |
IL-15 | 2 | chr4:142,557,752-142,665,140 | [42,43] |
ITLN1 | 5 | chr1:160,846,329-160,854,960 | [44] |
PGC-1α | 6 | chr4: 23,756,664-23,905,712 | [45] |
PGC-1β | 1 | chr5:149,109,861-149,234,585 | [45] |
PPRC1 | 1 | chr10: 103, 880, 777-103, 902, 078 | [45] |
PRDM16 | 2 | chr1: 2,985,732-3,355,185 | [46] |
PYY | 5 | chr17:39,385,633-39,437,363 | [47] |
REN | 5 | chr1: 202,390,571-202,402,088 | [48] |
RETN | 1 | chr19:7,639,972-7,641,340 | [49] |
Variable | Mean ± SD | Range | β | p-Value |
---|---|---|---|---|
Age (year) | 40 ± 14 | 19–69 | −0.27 | <0.001 |
Height (cm) | 165.3 ± 8.3 | 146.2–187.0 | 0.31 | <0.001 |
Body mass (kg) | 64.3 ± 11.6 | 39–104 | −0.01 | 0.523 |
Body mass index (kg/m2) | 23.4 ± 3.1 | 15.6–34.8 | −0.64 | <0.001 |
Body fat (%) | 27.1 ± 8.8 | 4.5–44.5 | −0.58 | <0.001 |
Fat-free mass (kg) | 43.8 ± 9.5 | 24.8–70.1 | 0.31 | <0.001 |
SNP | Partial R2 | p-Value | |
---|---|---|---|
Model 1 | ACE rs4295 | 0.0110 | 0.0024 |
AGTR1 rs275652 | 0.0056 | 0.0293 | |
GDF8 rs7570532 | 0.0053 | 0.0342 | |
Model 2 | Age | 0.2052 | <0.0001 |
Sex | 0.1800 | <0.0001 | |
Weight | 0.0994 | <0.0001 | |
ACE rs4295 | 0.0063 | 0.0015 | |
GDF8 rs7570532 | 0.0046 | 0.0058 | |
BDKRB2 rs4144131 | 0.0037 | 0.0135 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaowa; Del Coso, J.; Gu, Z.; Gerile, W.; Yang, R.; Díaz-Peña, R.; Valenzuela, P.L.; Lucia, A.; He, Z. Interindividual Variation in Cardiorespiratory Fitness: A Candidate Gene Study in Han Chinese People. Genes 2020, 11, 555. https://doi.org/10.3390/genes11050555
Gaowa, Del Coso J, Gu Z, Gerile W, Yang R, Díaz-Peña R, Valenzuela PL, Lucia A, He Z. Interindividual Variation in Cardiorespiratory Fitness: A Candidate Gene Study in Han Chinese People. Genes. 2020; 11(5):555. https://doi.org/10.3390/genes11050555
Chicago/Turabian StyleGaowa, Juan Del Coso, Zhuangzhuang Gu, Wuyun Gerile, Rui Yang, Roberto Díaz-Peña, Pedro L. Valenzuela, Alejandro Lucia, and Zihong He. 2020. "Interindividual Variation in Cardiorespiratory Fitness: A Candidate Gene Study in Han Chinese People" Genes 11, no. 5: 555. https://doi.org/10.3390/genes11050555
APA StyleGaowa, Del Coso, J., Gu, Z., Gerile, W., Yang, R., Díaz-Peña, R., Valenzuela, P. L., Lucia, A., & He, Z. (2020). Interindividual Variation in Cardiorespiratory Fitness: A Candidate Gene Study in Han Chinese People. Genes, 11(5), 555. https://doi.org/10.3390/genes11050555