How Spatially Resolved Polarimetry Informs Black Hole Accretion Flow Models
<p>A single GRMHD snapshot ray-traced and scaled to Sgr A* properties, with three decades in dynamic range shown. In the leftmost panel, ticks representing the linear polarization have lengths scaled proportionally to the total linearly polarized intensity. To date, total intensity maps have been produced for both Sgr A* and M87*, a linear polarization map has been produced for M87*, and the remaining observables have yet to be generated for either source. In the era of ngEHT, we will have access to each of these observables with improved dynamic range and time-domain information, which will greatly inform models of the black hole accretion flow. Note that finite spatial resolution and other data corruptions have not been taken into account.</p> "> Figure 2
<p>Intensity and spectral index map of a MAD model of Sgr A* adapted from Figure 4 of [<a href="#B41-galaxies-11-00005" class="html-bibr">41</a>]. The top left panel plots total intensity in log scale averaged between 214 and 228 GHz, the top center panel plots the spectral index across this bandwidth calculated by ray tracing the image at two different frequencies, and the top right panel plots an analytic prediction of the spectral index in each pixel obtained by combining the three quantities in the bottom panel: electron temperature, optical depth, and magnetic field strength, each computed by performing an emissivity-weighted average long each geodesic. The excellent agreement between the true spectral index map and the analytic prediction illustrates the power of spectral index maps to jointly constrain these plasma quantities.</p> "> Figure 3
<p>Polarization pattern of a ring of emission around a Schwarzschild black hole threaded with magnetic fields of different geometries: toroidal, radial, and vertical adapted from Figure 3 of [<a href="#B8-galaxies-11-00005" class="html-bibr">8</a>]. The toroidal and radial magnetic field cases clearly illustrate the fact that synchrotron emission is polarized perpendicular to the magnetic field projected onto the sky. The orientation of the ticks in the vertical field case encodes the direction of the fluid’s motion [<a href="#B8-galaxies-11-00005" class="html-bibr">8</a>], chosen here to be clockwise on the sky. These maps were computed using the analytic ring model of Narayan et al. [<a href="#B51-galaxies-11-00005" class="html-bibr">51</a>]. Here, the color map encodes the total intensity, and unlike in <a href="#galaxies-11-00005-f001" class="html-fig">Figure 1</a>, the linear polarization ticks do not scale with the polarized intensity.</p> "> Figure 4
<p>Rotation measure map of a MAD simulation of M87* adapted from Figure 13 of Ricarte et al. [<a href="#B44-galaxies-11-00005" class="html-bibr">44</a>]. Both positive and negative RM regions are simultaneously present, reflecting flips in the line-of-sight magnetic field direction due to turbulence in the accretion flow. The motion of these structures produces a time variable spatially unresolved RM, written at the bottom of each panel.</p> "> Figure 5
<p>Maps of circular polarization encode properties of the geometry of the magnetic field, both its line-of-sight direction and twist. A cartoon of a generic helical field geometry is depicted on the left. On the right, we plot the circular polarization of a MAD model of M87* at two inclinations. Both are reproduced from Ricarte et al. [<a href="#B37-galaxies-11-00005" class="html-bibr">37</a>]. The top row depicts a 5<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> viewing angle, and the bottom row depicts a 90<math display="inline"><semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics></math> viewing angle. The first column shows the time averaged circularly polarized image, the second column shows the same at a single snapshot, and the third column shows fractional circular polarization. For face-on viewing angles, the photon ring exhibits an interesting sign flip due to Faraday conversion and the sourcing of photons from the opposite side of the disk. For edge-on viewing angles, circular polarization exhibits a “four quadrants” pattern that reflects the line-of-sight magnetic field direction.</p> "> Figure 6
<p>GRMHD model of Sgr A* at 230 GHz before (<b>left</b>) and after (<b>right</b>) including the effects of interstellar scattering. This simulation is a MAD with <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mo>•</mo> </msub> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>high</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <msup> <mn>30</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>. The background image shows total intensity with respect to the image peak, while the ticks show the polarization magnitude and direction, colored by fractional polarization, while scattering severely affects the image, key polarimetric measures are nearly immune to scattering. For example, the unresolved fractional polarization is 10.5% before scattering and is 10.6% after scattering. Likewise, the <math display="inline"><semantics> <msub> <mi>β</mi> <mn>2</mn> </msub> </semantics></math> mode in polarization [<a href="#B55-galaxies-11-00005" class="html-bibr">55</a>] has <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mrow> <mo>|</mo> <mo>=</mo> <mn>0.40</mn> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo form="prefix">arg</mo> <mrow> <mo>(</mo> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>52</mn> <mo>.</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> before scattering, and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mrow> <mo>|</mo> <mo>=</mo> <mn>0.37</mn> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo form="prefix">arg</mo> <mrow> <mo>(</mo> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>51</mn> <mo>.</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> after scattering.</p> "> Figure 7
<p>Interferometric properties of the GRMHD model shown in <a href="#galaxies-11-00005-f006" class="html-fig">Figure 6</a>. Solid lines show the normalized intensity <math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <mover accent="true"> <mi>I</mi> <mo>˜</mo> </mover> <mrow> <mo>(</mo> <mi mathvariant="bold">u</mi> <mo>)</mo> </mrow> <mo>/</mo> <mover accent="true"> <mi>I</mi> <mo>˜</mo> </mover> <mrow> <mo>(</mo> <mn mathvariant="bold">0</mn> <mo>)</mo> </mrow> </mfenced> </semantics></math> before (blue) and after (red) scattering, and the dashed lines show the interferometric fractional polarization magnitude <math display="inline"><semantics> <mfenced separators="" open="|" close="|"> <mover accent="true"> <mi>m</mi> <mo>˘</mo> </mover> <mrow> <mo>(</mo> <mi mathvariant="bold">u</mi> <mo>)</mo> </mrow> </mfenced> </semantics></math>. For these curves, baselines are oriented along the East–West direction: <math display="inline"><semantics> <mrow> <mi mathvariant="bold">u</mi> <mo>=</mo> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math>. Over the full range of baseline lengths accessible from the ground, the fractional polarization is largely immune to scattering, while diffractive scattering causes a substantial reduction in the flux on long baselines.</p> "> Figure 8
<p>Two GRMHD models imaged at 228 GHz and corresponding maps of linear polarization in visibility space. The top row corresponds to a MAD model of M87* with <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mo>•</mo> </msub> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>high</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, while the bottom row corresponds to a SANE model with <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mo>•</mo> </msub> <mo>=</mo> <mo>−</mo> <mn>0.3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>high</mi> </msub> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>. Due to a much larger Faraday depth, written at the bottom of the images, the SANE model exhibits a much more disordered linear polarization pattern. In the ordered model, measures of the linear polarization rise dramatically with radius in the Fourier domain, while the disordered model is characterized by blobs with a coherence length corresponding to the size of the image.</p> ">
Abstract
:1. Simulating Black Hole Accretion Flows
2. Total Intensity and Spectral Index
3. Linear Polarization
4. Rotation Measure
5. Circular Polarization
6. Scattering
7. Studying Polarimetry with Interferometry
8. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | |
2 | is the temperature normalized by the electron rest mass energy, , where is the Boltzmann constant, T is the temperature in Kelvin, is the electron rest mass, and c is the speed of light. |
3 | These distributions are characterized by a thermal core with the addition of a high energy power-law tail, with slope . |
References
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. ApJ 2019, 875, L1. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. ApJ 2019, 875, L2. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. ApJ 2019, 875, L3. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. ApJ 2019, 875, L4. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. ApJ 2019, 875, L5. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. ApJ 2019, 875, L6. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. ApJ 2021, 910, L12. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. ApJ 2021, 910, L13. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. ApJ 2022, 930, L12. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. ApJ 2022, 930, L13. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. ApJ 2022, 930, L14. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. ApJ 2022, 930, L15. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. ApJ 2022, 930, L16. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. ApJ 2022, 930, L17. [Google Scholar] [CrossRef]
- Ricarte, A.; Tiede, P.; Emami, R.; Tamar, A.; Natarajan, P. The ngEHT’s Role in Measuring Supermassive Black Hole Spins. arXiv 2022, arXiv:2211.03910. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S.; Ruzmaikin, A.A. The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. Ap&SS 1974, 28, 45–59. [Google Scholar] [CrossRef]
- Igumenshchev, I.V.; Narayan, R.; Abramowicz, M.A. Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. ApJ 2003, 592, 1042–1059. [Google Scholar] [CrossRef]
- Narayan, R.; Igumenshchev, I.V.; Abramowicz, M.A. Magnetically Arrested Disk: An Energetically Efficient Accretion Flow. PASJ 2003, 55, L69–L72. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; SÄ dowski, A.; Penna, R.F.; Kulkarni, A.K. GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: Role of outflows. MNRAS 2012, 426, 3241–3259. [Google Scholar] [CrossRef]
- Sądowski, A.; Narayan, R.; Penna, R.; Zhu, Y. Energy, momentum and mass outflows and feedback from thick accretion discs around rotating black holes. MNRAS 2013, 436, 3856–3874. [Google Scholar] [CrossRef]
- Shapiro, S.L.; Lightman, A.P.; Eardley, D.M. A two-temperature accretion disk model for Cygnus X-1: Structure and spectrum. ApJ 1976, 204, 187–199. [Google Scholar] [CrossRef]
- Rees, M.J.; Begelman, M.C.; Blandford, R.D.; Phinney, E.S. Ion-supported tori and the origin of radio jets. Nature 1982, 295, 17–21. [Google Scholar] [CrossRef]
- Narayan, R.; Yi, I.; Mahadevan, R. Explaining the spectrum of Sagittarius A* with a model of an accreting black hole. Nature 1995, 374, 623–625. [Google Scholar] [CrossRef]
- Mościbrodzka, M.; Falcke, H.; Shiokawa, H. General relativistic magnetohydrodynamical simulations of the jet in M 87. A&A 2016, 586, A38. [Google Scholar] [CrossRef] [Green Version]
- Özel, F.; Psaltis, D.; Narayan, R. Hybrid Thermal-Nonthermal Synchrotron Emission from Hot Accretion Flows. ApJ 2000, 541, 234–249. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.A.; Dexter, J.; Quataert, E. The impact of non-thermal electrons on event horizon scale images and spectra of Sgr A*. MNRAS 2017, 466, 4307–4319. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Osorio, A.; Fromm, C.M.; Mizuno, Y.; Nathanail, A.; Younsi, Z.; Porth, O.; Davelaar, J.; Falcke, H.; Kramer, M.; Rezzolla, L. State-of-the-art energetic and morphological modelling of the launching site of the M87 jet. Nat. Astron. 2022, 6, 103–108. [Google Scholar] [CrossRef]
- Fromm, C.M.; Cruz-Osorio, A.; Mizuno, Y.; Nathanail, A.; Younsi, Z.; Porth, O.; Olivares, H.; Davelaar, J.; Falcke, H.; Kramer, M.; et al. Impact of non-thermal particles on the spectral and structural properties of M87. A&A 2022, 660, A107. [Google Scholar] [CrossRef]
- Anantua, R.; Emami, R.; Loeb, A.; Chael, A. Determining the Composition of Relativistic Jets from Polarization Maps. ApJ 2020, 896, 30. [Google Scholar] [CrossRef]
- Emami, R.; Anantua, R.; Chael, A.A.; Loeb, A. Positron Effects on Polarized Images and Spectra from Jet and Accretion Flow Models of M87* and Sgr A*. ApJ 2021, 923, 272. [Google Scholar] [CrossRef]
- Wong, G.N.; Gammie, C.F. Effects of Hydrogen vs. Helium on Electromagnetic Black Hole Observables. arXiv 2022, arXiv:2207.13705. [Google Scholar]
- Fragile, P.C.; Blaes, O.M.; Anninos, P.; Salmonson, J.D. Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk. ApJ 2007, 668, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Liska, M.; Hesp, C.; Tchekhovskoy, A.; Ingram, A.; van der Klis, M.; Markoff, S.B.; Van Moer, M. Disc tearing and Bardeen-Petterson alignment in GRMHD simulations of highly tilted thin accretion discs. MNRAS 2021, 507, 983–990. [Google Scholar] [CrossRef] [Green Version]
- Mościbrodzka, M.; Gammie, C.F. IPOLE—semi-analytic scheme for relativistic polarized radiative transport. MNRAS 2018, 475, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Wardle, J.F.C.; Homan, D.C. Theoretical Models for Producing Circularly Polarized Radiation in Extragalactic Radio Sources. Ap&SS 2003, 288, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Mościbrodzka, M.; Janiuk, A.; De Laurentis, M. Unraveling circular polarimetric images of magnetically arrested accretion flows near event horizon of a black hole. MNRAS 2021, 508, 4282–4296. [Google Scholar] [CrossRef]
- Ricarte, A.; Qiu, R.; Narayan, R. Black hole magnetic fields and their imprint on circular polarization images. MNRAS 2021, 505, 523–539. [Google Scholar] [CrossRef]
- Tsunetoe, Y.; Mineshige, S.; Ohsuga, K.; Kawashima, T.; Akiyama, K. Polarization images of accretion flow around supermassive black holes: Imprints of toroidal field structure. PASJ 2021, 73, 912–928. [Google Scholar] [CrossRef]
- Wardle, J.F.C.; Homan, D.C.; Ojha, R.; Roberts, D.H. Electron-positron jets associated with the quasar 3C279. Nature 1998, 395, 457–461. [Google Scholar] [CrossRef]
- Bower, G.C.; Dexter, J.; Asada, K.; Brinkerink, C.D.; Falcke, H.; Ho, P.; Inoue, M.; Markoff, S.; Marrone, D.P.; Matsushita, S.; et al. ALMA Observations of the Terahertz Spectrum of Sagittarius A*. ApJ 2019, 881, L2. [Google Scholar] [CrossRef]
- Ricarte, A.; Gammie, C.; Narayan, R.; Prather, B.S. Probing Plasma Physics with Spectral Index Maps of Accreting Black Holes on Event Horizon Scales. arXiv 2022, arXiv:2202.02408. [Google Scholar] [CrossRef]
- Mościbrodzka, M.; Dexter, J.; Davelaar, J.; Falcke, H. Faraday rotation in GRMHD simulations of the jet launching zone of M87. MNRAS 2017, 468, 2214–2221. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Rosales, A.; Dexter, J. The impact of Faraday effects on polarized black hole images of Sagittarius A*. MNRAS 2018, 478, 1875–1883. [Google Scholar] [CrossRef]
- Ricarte, A.; Prather, B.S.; Wong, G.N.; Narayan, R.; Gammie, C.; Johnson, M.D. Decomposing the internal faraday rotation of black hole accretion flows. MNRAS 2020, 498, 5468–5488. [Google Scholar] [CrossRef]
- Pandya, A.; Zhang, Z.; Chandra, M.; Gammie, C.F. Polarized Synchrotron Emissivities and Absorptivities for Relativistic Thermal, Power-law, and Kappa Distribution Functions. ApJ 2016, 822, 34. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Königl, A. Relativistic jets as compact radio sources. ApJ 1979, 232, 34–48. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 1968, 73, 2839–2884. [Google Scholar] [CrossRef]
- Xiao, F. Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas. Plasma Phys. Control. Fusion 2006, 48, 203–213. [Google Scholar] [CrossRef]
- Rybicki, G.B.; Lightman, A.P. Radiative Processes in Astrophysics; John Wiley & Sons, Inc.: New York, NY, USA, 1986. [Google Scholar]
- Himwich, E.; Johnson, M.D.; Lupsasca, A.; Strominger, A. Universal polarimetric signatures of the black hole photon ring. Phys. Rev. D. 2020, 101, 084020. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Palumbo, D.C.M.; Johnson, M.D.; Gelles, Z.; Himwich, E.; Chang, D.O.; Ricarte, A.; Dexter, J.; Gammie, C.F.; Chael, A.A.; et al. The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. ApJ 2021, 912, 35. [Google Scholar] [CrossRef]
- Gelles, Z.; Himwich, E.; Johnson, M.D.; Palumbo, D.C.M. Polarized image of equatorial emission in the Kerr geometry. Phys. Rev. D. 2021, 104, 044060. [Google Scholar] [CrossRef]
- Palumbo, D.C.M.; Wong, G.N. Photon Ring Symmetries in Simulated Linear Polarization Images of Messier 87*. ApJ 2022, 929, 49. [Google Scholar] [CrossRef]
- Walker, R.C.; Hardee, P.E.; Davies, F.B.; Ly, C.; Junor, W. The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz. ApJ 2018, 855, 128. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, D.C.M.; Wong, G.N.; Prather, B.S. Discriminating Accretion States via Rotational Symmetry in Simulated Polarimetric Images of M87. ApJ 2020, 894, 156. [Google Scholar] [CrossRef]
- Johnson, M.D. Stochastic Optics: A Scattering Mitigation Framework for Radio Interferometric Imaging. ApJ 2016, 833, 74. [Google Scholar] [CrossRef] [Green Version]
- Pacholczyk, A.G. Radio Astrophysics. Nonthermal Processes in Galactic and Extragalactic Sources; W. H. Freeman and Company: New York, NY, USA, 1970. [Google Scholar]
- Jones, T.W.; Hardee, P.E. Maxwellian synchrotron sources. ApJ 1979, 228, 268–278. [Google Scholar] [CrossRef]
- Goddi, C.; Martí-Vidal, I.; Messias, H.; Bower, G.C.; Broderick, A.E.; Dexter, J.; Marrone, D.P.; Moscibrodzka, M.; Nagai, H.; Algaba, J.C.; et al. Polarimetric Properties of Event Horizon Telescope Targets from ALMA. ApJ 2021, 910, L14. [Google Scholar] [CrossRef]
- Jorstad, S.G.; Marscher, A.P.; Lister, M.L.; Stirling, A.M.; Cawthorne, T.V.; Gear, W.K.; Gómez, J.L.; Stevens, J.A.; Smith, P.S.; Forster, J.R.; et al. Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array. AJ 2005, 130, 1418–1465. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Hodge, M.A.; Homan, D.C.; Kovalev, Y.Y.; Pushkarev, A.B.; Savolainen, T. MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017. ApJS 2018, 234, 12. [Google Scholar] [CrossRef]
- Ricarte, A.; Palumbo, D.C.M.; Narayan, R.; Roelofs, F.; Emami, R. Observational Signatures of Frame Dragging in Strong Gravity. arXiv 2022, arXiv:2211.01810. [Google Scholar] [CrossRef]
- Marrone, D.P.; Moran, J.M.; Zhao, J.H.; Rao, R. The Submillimeter Polarization of Sgr A*. J. Phys. Conf. Ser. 2006, 54, 354–362. [Google Scholar] [CrossRef]
- Trippe, S.; Paumard, T.; Ott, T.; Gillessen, S.; Eisenhauer, F.; Martins, F.; Genzel, R. A polarized infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots. MNRAS 2007, 375, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Zamaninasab, M.; Eckart, A.; Dovčiak, M.; Karas, V.; Schödel, R.; Witzel, G.; Sabha, N.; García-Marín, M.; Kunneriath, D.; Mužić, K.; et al. Near-infrared polarimetry as a tool for testing properties of accreting supermassive black holes. MNRAS 2011, 413, 322–332. [Google Scholar] [CrossRef] [Green Version]
- GRAVITY Collaboration; Abuter, R.; Amorim, A.; Bauböck, M.; Berger, J.P.; Bonnet, H.; Brandner, W.; Clénet, Y.; Coudé Du Foresto, V.; de Zeeuw, P.T.; et al. Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. A&A 2018, 618, L10. [Google Scholar] [CrossRef] [Green Version]
- Wielgus, M.; Moscibrodzka, M.; Vos, J.; Gelles, Z.; Martí-Vidal, I.; Farah, J.; Marchili, N.; Goddi, C.; Messias, H. Orbital motion near Sagittarius A* . Constraints from polarimetric ALMA observations. A&A 2022, 665, L6. [Google Scholar] [CrossRef]
- Broderick, A.E.; Loeb, A. Imaging bright-spots in the accretion flow near the black hole horizon of Sgr A*. MNRAS 2005, 363, 353–362. [Google Scholar] [CrossRef] [Green Version]
- GRAVITY Collaboration; Jiménez-Rosales, A.; Dexter, J.; Widmann, F.; Bauböck, M.; Abuter, R.; Amorim, A.; Berger, J.P.; Bonnet, H.; Brandner, W.; et al. Dynamically important magnetic fields near the event horizon of Sgr A*. A&A 2020, 643, A56. [Google Scholar] [CrossRef]
- Vos, J.; Moscibrodzka, M.; Wielgus, M. Polarimetric signatures of hot spots in black hole accretion flows. arXiv 2022, arXiv:2209.09931. [Google Scholar] [CrossRef]
- Hu, Z.; Hou, Y.; Yan, H.; Guo, M.; Chen, B. Electromagnetic radiations and polarized images of synchrotron radiations in curved spacetime. arXiv 2022, arXiv:2203.02908. [Google Scholar]
- Lee, T.; Hu, Z.; Guo, M.; Chen, B. Circular orbits and polarized images of charged particles orbiting Kerr black hole with a weak magnetic field. arXiv 2022, arXiv:2211.04143. [Google Scholar]
- Ripperda, B.; Bacchini, F.; Philippov, A.A. Magnetic Reconnection and Hot Spot Formation in Black Hole Accretion Disks. ApJ 2020, 900, 100. [Google Scholar] [CrossRef]
- Dexter, J.; Tchekhovskoy, A.; Jiménez-Rosales, A.; Ressler, S.M.; Bauböck, M.; Dallilar, Y.; de Zeeuw, P.T.; Eisenhauer, F.; von Fellenberg, S.; Gao, F.; et al. Sgr A* near-infrared flares from reconnection events in a magnetically arrested disc. MNRAS 2020, 497, 4999–5007. [Google Scholar] [CrossRef]
- Chatterjee, K.; Narayan, R. Flux eruption events drive angular momentum transport in magnetically arrested accretion flows. arXiv 2022, arXiv:2210.08045. [Google Scholar] [CrossRef]
- GRAVITY Collaboration; Bauböck, M.; Dexter, J.; Abuter, R.; Amorim, A.; Berger, J.P.; Bonnet, H.; Brandner, W.; Clénet, Y.; Coudé Du Foresto, V.; et al. Modeling the orbital motion of Sgr A*’s near-infrared flares. A&A 2020, 635, A143. [Google Scholar] [CrossRef]
- Gardner, F.F.; Whiteoak, J.B. The Polarization of Cosmic Radio Waves. ARA&A 1966, 4, 245. [Google Scholar] [CrossRef]
- Jones, T.W.; Odell, S.L. Transfer of polarized radiation in self-absorbed synchrotron sources. I. Results for a homogeneous source. ApJ 1977, 214, 522–539. [Google Scholar] [CrossRef]
- Marrone, D.P.; Moran, J.M.; Zhao, J.H.; Rao, R. An Unambiguous Detection of Faraday Rotation in Sagittarius A*. ApJ 2007, 654, L57–L60. [Google Scholar] [CrossRef] [Green Version]
- Plambeck, R.L.; Bower, G.C.; Rao, R.; Marrone, D.P.; Jorstad, S.G.; Marscher, A.P.; Doeleman, S.S.; Fish, V.L.; Johnson, M.D. Probing the Parsec-scale Accretion Flow of 3C 84 with Millimeter Wavelength Polarimetry. ApJ 2014, 797, 66. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J.C.; Liu, H.B.; Inoue, M.; Koch, P.M.; Ho, P.T.P.; Matsushita, S.; et al. Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. ApJ 2014, 783, L33. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Hada, K.; Kino, M.; Nakamura, M.; Ro, H.; Trippe, S. Faraday Rotation in the Jet of M87 inside the Bondi Radius: Indication of Winds from Hot Accretion Flows Confining the Relativistic Jet. ApJ 2019, 871, 257. [Google Scholar] [CrossRef] [Green Version]
- Marti-Vidal, I.; Muller, S. Submillimeter polarization and variability of quasar PKS 1830-211. A&A 2019, 621, A18. [Google Scholar] [CrossRef]
- Bower, G.C.; Broderick, A.; Dexter, J.; Doeleman, S.; Falcke, H.; Fish, V.; Johnson, M.D.; Marrone, D.P.; Moran, J.M.; Moscibrodzka, M.; et al. ALMA Polarimetry of Sgr A*: Probing the Accretion Flow from the Event Horizon to the Bondi Radius. ApJ 2018, 868, 101. [Google Scholar] [CrossRef] [Green Version]
- Kravchenko, E.V.; Kovalev, Y.Y.; Sokolovsky, K.V. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets. MNRAS 2017, 467, 83–101. [Google Scholar] [CrossRef]
- Martí-Vidal, I.; Muller, S.; Vlemmings, W.; Horellou, C.; Aalto, S. A strong magnetic field in the jet base of a supermassive black hole. Science 2015, 348, 311–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rickett, B.J. Radio propagation through the turbulent interstellar plasma. ARA&A 1990, 28, 561–605. [Google Scholar]
- Bower, G.C.; Deller, A.; Demorest, P.; Brunthaler, A.; Eatough, R.; Falcke, H.; Kramer, M.; Lee, K.J.; Spitler, L. The Angular Broadening of the Galactic Center Pulsar SGR J1745-29: A New Constraint on the Scattering Medium. ApJ 2014, 780, L2. [Google Scholar] [CrossRef] [Green Version]
- Psaltis, D.; Johnson, M.; Narayan, R.; Medeiros, L.; Blackburn, L.; Bower, G. A Model for Anisotropic Interstellar Scattering and its Application to Sgr A*. arXiv 2018, arXiv:1805.01242. [Google Scholar]
- Johnson, M.D.; Narayan, R.; Psaltis, D.; Blackburn, L.; Kovalev, Y.Y.; Gwinn, C.R.; Zhao, G.Y.; Bower, G.C.; Moran, J.M.; Kino, M.; et al. The Scattering and Intrinsic Structure of Sagittarius A* at Radio Wavelengths. ApJ 2018, 865, 104. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.D.; Kovalev, Y.Y.; Lisakov, M.M.; Voitsik, P.A.; Gwinn, C.R.; Bruni, G. First Space-VLBI Observations of Sagittarius A*. ApJ 2021, 922, L28. [Google Scholar] [CrossRef]
- Johnson, M.D.; Fish, V.L.; Doeleman, S.S.; Marrone, D.P.; Plambeck, R.L.; Wardle, J.F.C.; Akiyama, K.; Asada, K.; Beaudoin, C.; Blackburn, L.; et al. Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*. Science 2015, 350, 1242–1245. [Google Scholar] [CrossRef] [Green Version]
- Kovalev, Y.Y.; Kardashev, N.S.; Sokolovsky, K.V.; Voitsik, P.A.; An, T.; Anderson, J.M.; Andrianov, A.S.; Avdeev, V.Y.; Bartel, N.; Bignall, H.E.; et al. Detection statistics of the RadioAstron AGN survey. Adv. Space Res. 2020, 65, 705–711. [Google Scholar] [CrossRef] [Green Version]
- Wielgus, M.; Marchili, N.; Martí-Vidal, I.; Keating, G.K.; Ramakrishnan, V.; Tiede, P.; Fomalont, E.; Issaoun, S.; Neilsen, J.; Nowak, M.A.; et al. Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. ApJ 2022, 930, L19. [Google Scholar] [CrossRef]
- Gold, R.; McKinney, J.C.; Johnson, M.D.; Doeleman, S.S. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations. ApJ 2017, 837, 180. [Google Scholar] [CrossRef]
- Pushkarev, A.B.; Aller, M.F.; Aller, H.D.; Homan, D.C.; Kovalev, Y.Y.; Lister, M.L.; Pashchenko, I.N.; Savolainen, T.; Zobnina, D. MOJAVE. XXI. Persistent Linear Polarization Structure in Parsec-scale AGN Jets. arXiv 2022, arXiv:2209.04842. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricarte, A.; Johnson, M.D.; Kovalev, Y.Y.; Palumbo, D.C.M.; Emami, R. How Spatially Resolved Polarimetry Informs Black Hole Accretion Flow Models. Galaxies 2023, 11, 5. https://doi.org/10.3390/galaxies11010005
Ricarte A, Johnson MD, Kovalev YY, Palumbo DCM, Emami R. How Spatially Resolved Polarimetry Informs Black Hole Accretion Flow Models. Galaxies. 2023; 11(1):5. https://doi.org/10.3390/galaxies11010005
Chicago/Turabian StyleRicarte, Angelo, Michael D. Johnson, Yuri Y. Kovalev, Daniel C. M. Palumbo, and Razieh Emami. 2023. "How Spatially Resolved Polarimetry Informs Black Hole Accretion Flow Models" Galaxies 11, no. 1: 5. https://doi.org/10.3390/galaxies11010005
APA StyleRicarte, A., Johnson, M. D., Kovalev, Y. Y., Palumbo, D. C. M., & Emami, R. (2023). How Spatially Resolved Polarimetry Informs Black Hole Accretion Flow Models. Galaxies, 11(1), 5. https://doi.org/10.3390/galaxies11010005