Flux Distribution of Gamma-Ray Emission in Blazars: The Example of Mrk 501
<p>(<b>a</b>) Fermi-LAT photon flux light curve (in units of photons/cm<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>/s) for photon energies <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics></math> GeV spanning over a period of seven years, using a bin size is 28 days. The red band indicates the time range of the FACT data. (<b>b</b>) FACT energy flux light curve (in units of TeV/cm<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>/s) with nightly binning with an energy threshold <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> <mo>∼</mo> <mn>830</mn> </mrow> </semantics></math> GeV. The light curve spans a time interval of almost five months.</p> "> Figure 2
<p>The rescaled flux distribution of the long-term GeV <span class="html-italic">Fermi</span>-LAT light curves is shown here (for <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics></math> GeV) for the flux (<b>right panel</b>) and the <math display="inline"><semantics> <msub> <mo form="prefix">log</mo> <mn>10</mn> </msub> </semantics></math> of the flux (<b>left panel</b>). The blue histogram is obtained from the real <span class="html-italic">Fermi</span>-LAT monthly light curve. The solid lines are the mean obtained from the light curve simulations with PSD index = 1 (green line) and PSD index = 2 (blue line). The dashed and dot-dashed lines represent instead the 1 sigma confidence intervals obtained by taking the 16th and 84th percentile of the distribution of the entries in the bins for the 5000 simulations adopted. These results are robust to variations in binning and show no significant deviation between the <span class="html-italic">Fermi</span>-LAT data and a simulated normal distribution of the fluxes.</p> "> Figure 3
<p>Energy flux distribution of the FACT night-wise light curve compared with estimates from Gaussian (<b>left panel</b>, 5000 simulations) and log-normal (<b>right panel</b>, 1000 simulations) simulations. The colour codes are the same as in <a href="#galaxies-06-00135-f002" class="html-fig">Figure 2</a>. In this case, the flux distribution is better reproduced using a log-normal simulated dataset.</p> "> Figure 4
<p>Distribution of the rescaled flux for the H.E.S.S. 4-min-wise light curve compared with estimates from Gaussian (<b>left panel</b>, 1000 simulations) and log-normal (<b>right panel</b>, 1000 simulations) simulations. The colour codes are the same as in <a href="#galaxies-06-00135-f002" class="html-fig">Figure 2</a>. In this case there seems to be only a slight preference for a log-normal behaviour with respect to a normal one, but neither distributions explain well the data.</p> ">
Abstract
:1. Introduction
1.1. Flux Distributions of Blazars
1.1.1. Observational Evidences in Gamma Rays
1.1.2. Models to Explain Log-Normality
1.1.3. Importance of Simulations
1.2. Markarian 501
2. Variability and Flux Distributions for Mrk 501 in 2014
2.1. PDF at GeV Energies: Fermi-LAT
2.2. PDF at TeV Energies, FACT and H.E.S.S.
3. Discussion and Conclusions
3.1. Mrk 501 Results
3.2. The Importance of Unbiased Monitoring
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Uttley, P.; McHardy, I.M.; Vaughan, S. Non-linear X-ray variability in X-ray binaries and active galaxies. Mon. Not. R. Astron. Soc. 2005, 359, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Fermi-LAT Collaboration. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. Lett. 2015, 810, 14. [Google Scholar] [CrossRef]
- Giebels, B.; Degrange, B. Lognormal variability in BL Lacertae. Astron. Astrophys. 2009, 503, 797–799. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.I.; Sunyaev, R.A. A theory of the instability of disk accretion on to black holes and the variability of binary X-ray sources, galactic nuclei and quasars. Mon. Not. R. Astron. Soc. 1976, 175, 613–632. [Google Scholar] [CrossRef]
- H.E.S.S. Collaboration. Limits on an Energy Dependence of the Speed of Light from a Flare of the Active Galaxy PKS 2155-304. Phys. Rev. Lett. 2008, 101, 170402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- H.E.S.S. Collaboration. VHE γ-ray emission of PKS 2155-304: Spectral and temporal variability. Astron. Astrophys. 2010, 520, A83. [Google Scholar] [CrossRef]
- H.E.S.S. Collaboration. Characterizing the γ-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT. Astron. Astrophys. 2017, 598, A39. [Google Scholar] [CrossRef]
- Chevalier, J.; Kastendieck, M.A.; Rieger, F.; Maurin, G.; Lenain, J.P.; Giovanni Lamanna for the H.E.S.S. Collaboration. Long term variability of the blazar PKS 2155-304. arXiv, arXiv:astro-ph.HE/1509.03104.
- Tluczykont, M.; Bernardini, E.; Satalecka, K.; Clavero, R.; Shayduk, M.; Kalekin, O. Long-term lightcurves from combined unified very high energy γ-ray data. Astron. Astrophys. 2010, 524, A48. [Google Scholar] [CrossRef]
- Dorner, D.; Adam, J.; Ahnen, L.M.; Baack, D.; Balbo, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K.; Bulinski, M.; et al. FACT—Highlights from more than Five Years of Unbiased Monitoring at TeV Energies. In Proceedings of the 35th International Cosmic Ray Conference, Busan, Korea, 10–20 July 2016. [Google Scholar]
- Shah, Z.; Mankuzhiyil, N.; Sinha, A.; Misra, R.; Sahayanathan, S.; Iqbal, N. Log-normal flux distribution of bright Fermi blazars. arXiv, 2018; arXiv:astro-ph.HE/1805.04675. [Google Scholar] [CrossRef]
- Lyubarskii, Y.E. Flicker noise in accretion discs. Mon. Not. R. Astron. Soc. 1997, 292, 679. [Google Scholar] [CrossRef]
- Lawrence, A.; Watson, M.G.; Pounds, K.A.; Elvis, M. Low-frequency divergent X-ray variability in the Seyfert galaxy NGC4051. Nature 1987, 325, 694–696. [Google Scholar] [CrossRef]
- Goyal, A.; Zola, S.; Marchenko, V.; Soida, M.; Nilsson, K.; Ciprini, S.; Baran, A.; Ostrowski, M.; Wiita, P.J.; Siemiginowska, A.; et al. Stochastic Modeling of Multiwavelength Variability of the Classical BL Lac Object OJ 287 on Timescales Ranging from Decades to Hours. Astrophys. J. Lett. 2018, 863, 175. [Google Scholar] [CrossRef]
- Biteau, J.; Giebels, B. The minijets-in-a-jet statistical model and the rms-flux correlation. Astron. Astrophys. 2012, 548, A123. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Khatoon, R.; Misra, R.; Sahayanathan, S.; Mandal, S.; Gogoi, R.; Bhatt, N. The flux distribution of individual blazars as a key to understand the dynamics of particle acceleration. Mon. Not. R. Astron. Soc. 2018, 480, L116–L120. [Google Scholar] [CrossRef]
- Chakraborty, N.; Biteau, J. Stochastic Distortions of Broad-Band Blazar Observations. 2019, in preparation.
- Timmer, J.; Koenig, M. On generating power law noise. Astron. Astrophys. 1995, 300, 707. [Google Scholar]
- Vaughan, S.; Edelson, R.; Warwick, R.S.; Uttley, P. On characterizing the variability properties of X-ray light curves from active galaxies. Mon. Not. R. Astron. Soc. 2003, 345, 1271–1284. [Google Scholar] [CrossRef] [Green Version]
- Morris, P.J.; Chakraborty, N.; Cotter, G. 2019, in preparation.
- Quinn, J.; Akerlof, C.W.; Biller, S.; Buckley, J.; Carter-Lewis, D.A.; Cawley, M.F.; Catanese, M.; Connaughton, V.; Fegan, D.J.; Finley, J.P.; et al. Detection of Gamma Rays with E > 300 GeV from Markarian 501. Astrophys. J. Lett. 1996, 456, L83. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Bechtol, K.; et al. Insights into the High-energy γ-ray Emission of Markarian 501 from Extensive Multifrequency Observations in the Fermi Era. Astrophys. J. Lett. 2011, 727, 129. [Google Scholar] [CrossRef]
- Fermi-LAT Collaboration. Fermi Large Area Telescope Third Source Catalog. Astrophys. J. Suppl. Ser. 2015, 218, 23. [Google Scholar]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. The extreme HBL behaviour of Markarian 501 during 2012. arXiv, 2018; arXiv:astro-ph.HE/1808.04300. [Google Scholar]
- Aharonian, F.A.; Akhperjanian, A.G.; Barrio, J.A.; Bernlöhr, K.; Bojahr, H.; Contreras, J.L.; Cortina, J.; Daum, A.; Deckers, T.; Fonseca, V.; Gonzalez, J.C.; Heinzelmann, G.; Hemberger, M.; Hermann, G.; et al. The temporal characteristics of the TeV gamma-radiation from MKN 501 in 1997. I. Data from the stereoscopic imaging atmospheric Cherenkov telescope system of HEGRA. Astron. Astrophys. 1999, 342, 69–86. [Google Scholar]
- Djannati-Atai, A.; Piron, F.; Barrau, A.; Iacoucci, L.; Punch, M.; Tavernet, J.P.; Bazer-Bachi, R.; Cabot, H.; Chounet, L.M.; Debiais, G.; et al. Very High Energy Gamma-ray spectral properties of MKN 501 from CAT Čerenkov telescope observations in 1997. Astron. Astrophys. 1999, 350, 17–24. [Google Scholar]
- Cologna, G.; Chakraborty, N.; Jacholkowska, A.; Lorentz, M.; Mohamed, M.; Perennes, C.; Romoli, C.; Wagner, S.J.; Wierzcholska, A.; H.E.S.S. Collaboration; et al. The exceptional flare of Mrk 501 in 2014 combined observations with H.E.S.S. and FACT. In Proceedings of the 6th International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 11–15 July 2016. [Google Scholar]
- Paneque, D.; et al. Galaxies 2019, in preparation.
- Stegmann, C. Increased VHE Activity from Mrk 501 Detected with H.E.S.S. The Astronomer’s Telegram, June 2014; No. 6268. [Google Scholar]
- Dorner, D.; Ahnen, M.L.; Bergmann, M.; Biland, A.; Balbo, M.; Bretz, T.; Buss, J.; Einecke, S.; Freiwald, J.; Hempfling, C.; et al. FACT—Monitoring Blazars at Very High Energies. arXiv, 2015; arXiv:astro-ph.HE/1502.02582. [Google Scholar]
- Hildebrand, D.; Ahnen, M.L.; Balbo, M.; Biland, A.; Bretz, T.; Buss, J.; Dorner, D.; Einecke, S.; Elsaesser, D.; Herbst, T.; et al. Using Charged Cosmic Ray Particles to Monitor the Data Quality of FACT. In Proceedings of the 35th International Cosmic Ray Conference, Busan, Korea, 10–20 July 2017. [Google Scholar]
- Mahlke, M.; Bretz, T.; Adam, J.; Ahnen, L.M.; Baack, D.; Balbo, M.; Biland, A.; Blank, M.; Bruegge, K.; Buss, J.; et al. FACT—Searching for periodicity in five-year light-curves of Active Galactic Nuclei. In Proceedings of the 35th International Cosmic Ray Conference, Busan, Korea, 10–20 July 2017. [Google Scholar]
- Dorner, D.; FACT Collaboration; Adam, J.; Ahnen, L.M.; Baack, D.; Balbo, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K.; et al. FACT—Time-Resolved Blazar SEDs. Proceedings of tne 35th International Cosmic Ray Conference, Busan, Korea, 10–20 July 2017; Volume 301. [Google Scholar]
- Yap, B.W.; Sim, C.H. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 2011, 81, 2141–2155. [Google Scholar] [CrossRef] [Green Version]
- Dorner, D.; et al. Galaxies 2019, in preparation.
- Taylor, A.M. Active galactic nuclei horizons from the gamma-ray perspective. New Astron. Rev. 2017, 78, 16–25. [Google Scholar] [CrossRef]
- Dorner, D.; Bretz, T.; Gonzalez, M.; Alfaro, R.; Tovmassian, G. M@TE—Monitoring at TeV energies. In Proceedings of the 6th International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 11–15 July 2016; Volume 1792, p. 070007. [Google Scholar]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Solares, H.A.; Barber, A.S.; Baughman, B.; et al. The 2HWC HAWC Observatory Gamma-Ray Catalog. Astrophys. J. 2017, 843, 40. [Google Scholar] [CrossRef] [Green Version]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; et al. Daily Monitoring of TeV Gamma-Ray Emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC. Astrophys. J. 2017, 841, 100. [Google Scholar] [CrossRef] [Green Version]
- Acharya, B.S.; Agudo, I.; Samarai, I.A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Alves Batista, R.; Amans, J.P.; Amato, E.; Ambrosi, G.; et al. Science with the Cherenkov Telescope Array. arXiv, 2017; arXiv:astro-ph.IM/1709.07997. [Google Scholar]
- Cyranoski, D. Chinese mountain observatory to probe cosmic-ray origins. Nature 2017, 543, 300–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SGSO Alliance. White Paper. 2019, in preparation.
1. | |
2. | |
3. | It can be seen that the index of the power spectrum density (PSD) does not influence much the flux distribution, at least for the indices tested here. |
4. | |
5. | |
6. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romoli, C.; Chakraborty, N.; Dorner, D.; Taylor, A.M.; Blank, M. Flux Distribution of Gamma-Ray Emission in Blazars: The Example of Mrk 501. Galaxies 2018, 6, 135. https://doi.org/10.3390/galaxies6040135
Romoli C, Chakraborty N, Dorner D, Taylor AM, Blank M. Flux Distribution of Gamma-Ray Emission in Blazars: The Example of Mrk 501. Galaxies. 2018; 6(4):135. https://doi.org/10.3390/galaxies6040135
Chicago/Turabian StyleRomoli, Carlo, Nachiketa Chakraborty, Daniela Dorner, Andrew M. Taylor, and Michael Blank. 2018. "Flux Distribution of Gamma-Ray Emission in Blazars: The Example of Mrk 501" Galaxies 6, no. 4: 135. https://doi.org/10.3390/galaxies6040135