Flexural Behavior of Alkali-Activated Ultra-High-Performance Geopolymer Concrete Beams
<p>Geometric dimensions and reinforcement details of specimens.</p> "> Figure 1 Cont.
<p>Geometric dimensions and reinforcement details of specimens.</p> "> Figure 2
<p>Tensile specimen size and loading device.</p> "> Figure 3
<p>Test setup.</p> "> Figure 4
<p>Strain gauge arrangement in pure bending reinforcement section and beam surface concrete.</p> "> Figure 5
<p>Photograph of final failure of each beam.</p> "> Figure 6
<p>Development of the cracking pattern caught by DIC system and final failure pattern for each beam.</p> "> Figure 7
<p>Load–maximum crack width curves.</p> "> Figure 8
<p>Load–deflection curves.</p> "> Figure 9
<p>Load–steel strain relationships.</p> "> Figure 10
<p>Strain distribution at mid-span section.</p> "> Figure 11
<p>Stress and strain distributions along the length of the R-UHPGC beams.</p> "> Figure 12
<p>Comparison of experimental and predicted values of average crack spacing.</p> ">
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Test Specimens
2.2. Material Properties
2.3. Instruments
2.4. Test Setup and Procedure
3. Results
3.1. Cracking Behavior and Failure Patterns
3.2. Load–Deflection Curves
3.3. Load–Steel Strain Relationship
3.4. Load–Concrete Strain Relationship
3.5. Ductility Analysis
4. Discussion
4.1. Ultimate Moment
4.2. Average Crack Spacing
4.3. Short-Term Stiffness
5. Conclusions
- (1)
- The reinforced UHPGC beams tested in this study all failed due to crack localization, and all the beams possessed high ductility. Among them, the specimen F2.5-1.88 exhibited the best ductility performance. When the reinforcement ratio was further increased, the ductility of the specimens decreased. Bond failure between the reinforcement and UHPGC is considered a possible cause, which may be caused by the poorer deformation coordination ability of the UHPGC-rebar compared to the UHPC-rebar. This allowed the strain in the steel to be distributed over a longer length of tensile reinforcement, delaying the breaking of the tensile steel. Longitudinal cracks in all specimens corroborate this viewpoint.
- (2)
- The cracking loads of the UHPGC beams increased with an increase in the steel fiber content. Compared to the specimens with fiber volume fractions of 2.0% and 1.5%, the cracking loads of the specimens with fiber volume fractions of 2.5% increased by 14.5% and 23.2%, respectively. The experimental results indicate that an excessively high fiber content can affect the compactness of a beam, thereby impacting its ultimate load capacity.
- (3)
- The flexural capacity of the UHPGC beams increased with an increase in the reinforcement ratio. Compared to the specimen with a rebar ratio of 1.18%, the flexural capacities of the specimens with reinforcement ratios of 1.88% and 2.32% increased by 39.8% and 60.5%, respectively. The results indicate that an increased reinforcement ratio helps to slow down crack propagation but increases the frequency of longitudinal cracks.
- (4)
- Current design methods accurately predicted the ultimate load capacities of the UHPGC beams. DBJ43/T 325-2017 greatly underestimated the flexural capacity of the UHPGC beams, with an average Mpred/Mexp of 0.82. On the other hand, NF P 18-710 provided the most accurate prediction but was less practical, with an average Mpred/Mexp of 0.996. MCS-EPFL and Fei Peng’s equation were less conservative, with average Mpred/Mexp values of 1.032 and 1.022, respectively.
- (5)
- DBJ43/T325-2017 could precisely forecast short-term flexural stiffness but overestimated crack spacing. The difference in the elastic modulus of UHPGC which leads to the non-uniform strain between the reinforcement steel bar and the matrix is considered to be the cause of this overestimation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kravanja, G.; Mumtaz, A.R.; Kravanja, S. A Comprehensive Review of the Advances, Manufacturing, Properties, Innovations, Environmental Impact and Applications of Ultra-High-Performance Concrete (UHPC). Buildings 2024, 14, 382. [Google Scholar] [CrossRef]
- Yu, R.; Spiesz, P.; Brouwers, H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cem. Concr. Compos. 2015, 55, 383–394. [Google Scholar] [CrossRef]
- Li, B.; Guo, W.; Liu, X.; Zhang, Y.; Caneparo, L. The Third Solar Decathlon China Buildings for Achieving Carbon Neutrality. Buildings 2022, 12, 1094. [Google Scholar] [CrossRef]
- Ijaz, N.; Ye, W.-M.; Rehman, Z.U.; Ijaz, Z.; Junaid, M.F. Global insights into micro-macro mechanisms and environmental implications of limestone calcined clay cement (LC3) for sustainable construction applications. Sci. Total. Environ. 2024, 907, 167794. [Google Scholar] [CrossRef]
- Abdellatief, M.; Elrahman, M.A.; Abadel, A.A.; Wasim, M.; Tahwia, A. Ultra-high performance concrete versus ultra-high performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment. J. Build. Eng. 2023, 79, 107835. [Google Scholar] [CrossRef]
- Kathirvel, P.; Sreekumaran, S. Sustainable development of ultra high performance concrete using geopolymer technology. J. Build. Eng. 2021, 39, 102267. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, R.; Zhang, J.; Shui, Z. A low-carbon alkali activated slag based ultra-high performance concrete (UHPC): Reaction kinetics and microstructure development. J. Clean. Prod. 2022, 363, 132416. [Google Scholar] [CrossRef]
- Ambily, P.S.; Ravisankar, K.; Umarani, C.; Dattatreya, J.K.; Iyer, N.R. Development of ultra-high-performance geopolymer concrete. Mag. Concr. Res. 2014, 66, 82–89. [Google Scholar] [CrossRef]
- Lao, J.-C.; Xu, L.-Y.; Huang, B.-T.; Dai, J.-G.; Shah, S.P. Strain-hardening ultra-high-performance geopolymer concrete (UHPGC): Matrix design and effect of steel fibers. Compos. Commun. 2022, 30, 101081. [Google Scholar] [CrossRef]
- Lao, J.-C.; Huang, B.-T.; Fang, Y.; Xu, L.-Y.; Dai, J.-G.; Shah, S.P. Strain-hardening alkali-activated fly ash/slag composites with ultra-high compressive strength and ultra-high tensile ductility. Cem. Concr. Res. 2023, 165, 107075. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Mahmood, L.J.; Muhammad, M.A.; Faraj, R.H.; Qaidi, S.M.; Sor, N.H.; Mohammed, A.S.; Mohammed, A.A. Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles. Neural. Comput. Appl. 2023, 35, 12453–12479. [Google Scholar] [CrossRef]
- Cai, R.; Ye, H. Clinkerless ultra-high strength concrete based on alkali-activated slag at high temperatures. Cem. Concr. Res. 2021, 145, 106465. [Google Scholar] [CrossRef]
- Assi, L.N.; Carter, K.; Deaver, E.; Ziehl, P. Review of availability of source materials for geopolymer/sustainable concrete. J. Clean. Prod. 2020, 263, 121477. [Google Scholar] [CrossRef]
- Wetzel, A.; Middendorf, B. Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cem. Concr. Compos. 2019, 100, 53–59. [Google Scholar] [CrossRef]
- Yang, I.H.; Joh, C.; Kim, B.-S. Structural behavior of ultra high performance concrete beams subjected to bending. Eng. Struct. 2010, 32, 3478–3487. [Google Scholar] [CrossRef]
- Feng, Z.; Li, C.; Yoo, D.-Y.; Pan, R.; He, J.; Ke, L. Flexural and cracking behaviors of reinforced UHPC beams with various reinforcement ratios and fiber contents. Eng. Struct. 2021, 248, 113266. [Google Scholar] [CrossRef]
- Yang, J.; Fang, Z. Flexural capacity of reinforced UHPC beams, China Railway. Science 2009, 30, 23–30. [Google Scholar] [CrossRef]
- Liu, C.; Huang, Y.; Ma, R.; Wang, J.; Liu, G. Calculation Method for Flexural Capacity of High Strain-Hardening UHPC T-Beams. J. Tongji Univ. (Nat. Sci.) 2018, 46, 744–750. [Google Scholar] [CrossRef]
- Wang, M.; Gao, L.; Wang, K.; Shi, G. Experimental Study on Flexural Behavior and Bearing Capacity of UHPC Beams Reinforced with High Strength Steel Bars. Bridge Constr. 2022, 52, 87–94. [Google Scholar] [CrossRef]
- Peng, F.; Fang, Z. Calculation approach for flexural capacity of reinforced UHPC beams. China Civ. Eng. J. 2021, 54, 86–97. [Google Scholar] [CrossRef]
- Qaidi, S.; Yahia, A.; Tayeh, B.A.; Unis, H.; Faraj, R.; Mohammed, A. 3D printed geopolymer composites: A review. Mater. Today Sustain. 2022, 20, 100240. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, C.; Zhang, Z.; Li, N.; Shi, D. Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cem. Concr. Compos. 2020, 112, 103665. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.-C.; Cai, R.; Ye, H. Mechanical degradation of ultra-high strength alkali-activated concrete subjected to repeated loading and elevated temperatures. Cem. Concr. Compos. 2021, 121, 104083. [Google Scholar] [CrossRef]
- GB/T 31387-2015; Reactive Powder Concrete. Standards Press of China: Beijing, China, 2015.
- Du, Y.; Wang, J.; Shi, C.; Hwang, H.-J.; Li, N. Flexural behavior of alkali-activated slag-based concrete beams. Eng. Struct. 2020, 229, 111644. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Shi, C.; Zhu, D.; Li, N.; Deng, Y. Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cem. Concr. Compos. 2020, 112, 103670. [Google Scholar] [CrossRef]
- Peng, F.; Deng, J.; Fang, Z.; Tang, Z. Ductility evaluation and flexural failure mode recognition of reinforced Ultra-High performance concrete flexural members. Structures 2023, 51, 1881–1892. [Google Scholar] [CrossRef]
- DBJ43/T325-2017; Ministry of Housing and Urban-Rural Development of Hunan Province. Technical Specification for Reactive Powder Concrete Structures. Architecture Publishing &. Media Co., Ltd.: Beijing, China, 2017.
- NF P 18-710; AFNOR. National Addition to Eurocode 2-Design of Concrete Structures: Specific Rules for Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC). Association Francaise deNormalisation: Paris, France, 2016.
- MCS-EPFL. Recommendation: Ultra-High Performance Fibre Reinforced Cement-Based Composites (UHPFRC); Maintenance, Construction and Safety of Structures (MCS)-École polytechnique fédérale de Lausanne (EPFL): Lausanne, Switzerland, 2016. [Google Scholar]
- CSA. Canadian Highway Bridge Design Code; CSA: Toronto, ON, USA, 2019. [Google Scholar]
- Aaleti, S.; Petersen, B.; Sritharan, S. FHWAHIF-3-032Design Guide for Precast UHPC Waffle Deck Panel System, Including Connections; Federal Highway Administration: Washington, DC, USA, 2013. [Google Scholar]
- GB 50010-2010; Code for Design of Concrete Structures-2010. Ministry of Housing and Urban-Rural Development of China: Beijing, China, 2010.
- Xu, M.; Liang, X.; Yu, J.; Li, L. Theoretical and Experimental Investigation On Immediate Stiffness of UHPC Beams. Eng. Mech. 2019, 36, 146–154+164. [Google Scholar] [CrossRef]
Steel Bar | d (mm) | fy (MPa) | fsu (MPa) |
---|---|---|---|
HRB400 | 14 | 488 | 622 |
18 | 469 | 597 | |
20 | 459 | 578 |
Specimens | Cross-Section | l0 (mm) | Vf (%) | (%) | ρsv (%) | |
---|---|---|---|---|---|---|
b (mm) | h (mm) | |||||
F2-1.88 | 150 | 300 | 1800 | 2 | 1.88 | 1.30 |
F1.5-1.88 | 150 | 300 | 1800 | 1.5 | 1.88 | 1.30 |
F2.5-1.88 | 150 | 300 | 1800 | 2.5 | 1.88 | 1.30 |
F2-1.18 | 150 | 300 | 1800 | 2 | 1.14 | 1.30 |
F2-2.32 | 150 | 300 | 1800 | 2 | 2.32 | 1.30 |
SiO2 | Al2O3 | CaO | MgO | K2O | Fe2O3 | Na2O | SO3 | |
---|---|---|---|---|---|---|---|---|
Slag | 38.65 | 39.05 | 7.33 | 0.85 | 1.26 | 6.92 | 0.62 | 2.00 |
Fly Ash | 51.8 | 28.1 | 3.7 | 1.2 | 0.6 | 6.2 | 1.2 | 0.27 |
Silica Fume | 96.92 | 0.52 | 1.03 | 0.31 | 0.61 | 0.09 | 0.18 | 0.17 |
Concrete | w/c | Material (kg·m−3) | ||||||
---|---|---|---|---|---|---|---|---|
Water | Slag | Fly Ash | Sand | Silica Fume | NaOH | Sodium Silicate | ||
UHPGC | 0.32 | 97 | 688 | 172 | 905 | 45 | 45 | 314 |
Material | Vf (%) | fcu (MPa) | fc (MPa) | ft (MPa) | Ec (GPa) |
---|---|---|---|---|---|
UHPGC | 1.5 | 145.6 | 102.0 | 4.2 | 26.8 |
2 | 152.0 | 108.9 | 4.9 | 28.5 | |
2.5 | 156.2 | 115.3 | 5.6 | 30.4 |
Specimen | Crack State | Yield State | Peak State | SLS Max Crack Width ω | Ductility Index (η) | |||
---|---|---|---|---|---|---|---|---|
F2-1.88 | 213.41 | 5.32 | 363.7 | 8.27 | 377.2 | 87.3 | 0.048 | 10.55 |
F1.5-1.88 | 198.34 | 4.68 | 332.3 | 8.01 | 355.0 | 83.8 | 0.056 | 10.46 |
F2.5-1.88 | 244.32 | 6.10 | 361.3 | 8.54 | 372.1 | 90.7 | 0.041 | 10.62 |
F2-1.18 | 144.34 | 3.67 | 259.2 | 7.61 | 266.3 | 80.8 | 0.051 | 10.61 |
F2-2.32 | 249.15 | 6.65 | 390.1 | 11.51 | 427.7 | 88.2 | 0.060 | 7.66 |
Specimen | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F2-1.88 | 113.2 | 118.4 | 114.9 | 115.1 | 90.9 | 114.6 | 1.046 | 1.015 | 1.017 | 0.804 | 1.013 |
F2-1.18 | 79.8 | 79.7 | 85.8 | 86.1 | 58.7 | 84.3 | 0.998 | 1.075 | 1.078 | 0.735 | 1.056 |
F2-2.32 | 128.1 | 127.7 | 130.4 | 130.7 | 108.4 | 131.0 | 0.997 | 1.018 | 1.020 | 0.846 | 1.022 |
F2.5-1.88 | 111.6 | 109.1 | 114.5 | 114.7 | 90.6 | 110.9 | 0.977 | 1.025 | 1.028 | 0.812 | 0.994 |
F1.5-1.88 | 106.5 | 102.7 | 108.0 | 108.2 | 91.2 | 109.2 | 0.964 | 1.014 | 1.016 | 0.856 | 1.025 |
Average | 0.996 | 1.030 | 1.032 | 0.810 | 1.022 | ||||||
St. dev. | 0.028 | 0.023 | 0.024 | 0.043 | 0.020 | ||||||
COV% | 2.80 | 2.25 | 2.28 | 5.25 | 2.00 |
Specimens | |||
---|---|---|---|
F2-1.88 | 113.2 | 118.4 | 0.977 |
F2-1.18 | 79.8 | 79.7 | 1.002 |
F2-2.32 | 128.1 | 127.7 | 0.992 |
F2.5-1.88 | 111.6 | 109.1 | 0.971 |
F1.5-1.88 | 106.5 | 102.7 | 0.987 |
AVG | 0.986 | ||
STDEV | 0.011 | ||
COV% | 1.11 |
Specimen | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F2-1.88 | 9.45 | 9.97 | 0.948 | 5.98 | 6.85 | 0.904 | 5.74 | 6.63 | 0.906 | 5.74 | 6.48 | 0.926 |
F2-1.18 | 8.80 | 9.46 | 0.925 | 5.58 | 5.74 | 0.972 | 5.12 | 5.38 | 0.952 | 4.69 | 5.15 | 0.941 |
F2-2.32 | 9.82 | 10.63 | 0.962 | 8.30 | 7.43 | 1.117 | 8.22 | 7.25 | 1.134 | 8.14 | 7.12 | 1.103 |
F2.5-1.88 | 9.68 | 9.92 | 0.911 | 6.88 | 7.25 | 0.949 | 6.88 | 7.05 | 0.976 | 6.79 | 6.91 | 0.983 |
F1.5-1.88 | 9.11 | 9.51 | 0.963 | 5.60 | 6.12 | 0.915 | 5.67 | 5.96 | 0.951 | 5.69 | 5.86 | 0.971 |
Average | 0.942 | 0.959 | 0.976 | 0.979 | ||||||||
St. dev. | 0.021 | 0.082 | 0.067 | 0.041 | ||||||||
COV% | 2.45 | 4.47 | 6.02 | 4.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Tan, J.; Li, K.; Fang, Z. Flexural Behavior of Alkali-Activated Ultra-High-Performance Geopolymer Concrete Beams. Buildings 2024, 14, 701. https://doi.org/10.3390/buildings14030701
Su J, Tan J, Li K, Fang Z. Flexural Behavior of Alkali-Activated Ultra-High-Performance Geopolymer Concrete Beams. Buildings. 2024; 14(3):701. https://doi.org/10.3390/buildings14030701
Chicago/Turabian StyleSu, Jie, Jiandong Tan, Kai Li, and Zhi Fang. 2024. "Flexural Behavior of Alkali-Activated Ultra-High-Performance Geopolymer Concrete Beams" Buildings 14, no. 3: 701. https://doi.org/10.3390/buildings14030701
APA StyleSu, J., Tan, J., Li, K., & Fang, Z. (2024). Flexural Behavior of Alkali-Activated Ultra-High-Performance Geopolymer Concrete Beams. Buildings, 14(3), 701. https://doi.org/10.3390/buildings14030701