Application of Low-Cost Sensors for Accurate Ambient Temperature Monitoring
<p>Evolution of studies referenced in Scopus database dealing with low-cost sensors, from 2011 to 2021: (<b>a</b>) civil–building; (<b>b</b>) medical; (<b>c</b>) electrical; (<b>d</b>) industrial; (<b>e</b>) mechanical; (<b>f</b>) architecture.</p> "> Figure 2
<p>The defined sensor configuration for each monitoring system in the algorithm (<b>a</b>) and the order of the sensor selection for combinatorial analysis (<b>b</b>). The numbers in this Figure refer to the order of the sensors for selection of various sensor arrangements in combinatorial analysis.</p> "> Figure 3
<p>Algorithm to record the temperature measurements on each monitoring system.</p> "> Figure 4
<p>Algorithm in MATLAB to analyse the recorded data.</p> "> Figure 5
<p>Elements in the experiment: (1) laptop, (2) monitoring system BMP280, (3) monitoring system BMP180, (4) monitoring system DHT22, (5) monitoring system SHT21, (6) monitoring system SHT35, and (7) EL-USB-2-LASCAR.</p> "> Figure 6
<p>Evolution of the temperatures recorded by the 30 sensor copies of SHT35.</p> "> Figure 7
<p>Standard deviations of the five monitoring systems with 30 sensors.</p> "> Figure 8
<p>Standard deviation of the monitoring system DHT22 with different numbers of sensors (10, 20 and 30).</p> "> Figure 9
<p>Comparison between the reference temperatures recorded by the five monitoring systems with measurements of the commercial thermometer EL-USB-2 LASCAR.</p> "> Figure 10
<p>Errors of EL-USB-2 LASCAR calculated from the reference temperatures of the five developed monitoring systems.</p> "> Figure 11
<p>(<b>a</b>) Normal Q-Q plots (SHT35), (<b>b</b>) Histograms (SHT35), (<b>c</b>) Box-and-whiskers plot (SHT35), (<b>d</b>) Normal Q−Q plots (SHT21), (<b>e</b>) Histograms (SHT21), (<b>f</b>) Box-and-whiskers plot (SHT21), (<b>g</b>) Normal Q−Q plots (DHT22), (<b>h</b>) Histograms (DHT22), (<b>i</b>) Box-and-whiskers plot (DHT22), (<b>j</b>) Normal Q−Q plots (BMP180), (<b>k</b>) Histograms (BMP180), (<b>l</b>) Box-and-whiskers plot (BMP180), (<b>m</b>) Normal Q−Q plots (BMP280), (<b>n</b>) Histograms (BMP280), and (<b>o</b>) Box-and-whiskers plot (BMP180).</p> "> Figure 12
<p>Comparison between the most- and least-accurate sensors in the sets and the accuracies described in their respective commercial catalogues.</p> "> Figure 13
<p>Maximum absolute errors of all possible arrangements of the different sensors in the five developed monitoring systems and in the state-of-the-art thermometers.</p> "> Figure 14
<p>Pairwise correlations between all sensor sets and the associated statistical reference for an increasing number of sensors (ranging from 1 to 3). R<sup>2</sup> values were derived by the least-square regressions.</p> "> Figure 15
<p>Minimum absolute errors between all possible arrangements of different sensors in the five developed monitoring systems.</p> ">
Abstract
:1. Introduction
2. Development of a Novel Monitoring System
2.1. Hardware of the Proposed Monitoring System
2.2. Software
2.2.1. Algorithm for Reading Sensor Data
2.2.2. Data Analysis Algorithm
3. Commercial Thermometers
4. Experiment
4.1. Description
4.2. Analysis of the Reference Temperatures
4.3. Normality Test of the Reference Temperature
4.4. Analysis of the Individual Sensors
4.5. Analysis of the Developed Monitoring Systems with Different Number of Sensors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mobaraki, B.; Ma, H.; Lozano Galant, J.A.; Turmo, J. Structural Health Monitoring of 2D Plane Structures. Appl. Sci. 2021, 11, 2000. [Google Scholar] [CrossRef]
- Makoond, N.; Pelà, L.; Molins, C.; Roca, P.; Alarcón, D. Automated Data Analysis for Static Structural Health Monitoring of Masonry Heritage Structures. Struct. Control Heal. Monit. 2020, 27, 1–25. [Google Scholar] [CrossRef]
- Jiang, S.F.; Qiao, Z.H.; Li, N.L.; Luo, J.B.; Shen, S.; Wu, M.H.; Zhang, Y. Structural Health Monitoring System Based on FBG Sensing Technique for Chinese Ancient Timber Buildings. Sensors 2020, 20, 110. [Google Scholar] [CrossRef] [PubMed]
- Lyapin, A.; Beskopylny, A.; Meskhi, B. Structural Monitoring of Underground Structures in Multi-Layer Media by Dynamic Methods. Sensors 2020, 20, 5241. [Google Scholar] [CrossRef] [PubMed]
- Minardo, A.; Catalano, E.; Coscetta, A.; Zeni, G.; Di Maio, C.; Vassallo, R.; Picarelli, L.; Coviello, R.; Macchia, G.; Zeni, L. Long-Term Monitoring of a Tunnel in a Landslide Prone Area by Brillouin-Based Distributed Optical Fiber Sensors. Sensors 2021, 21, 7032. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Lei, X.; Wang, P.; Sun, L. Artificial Intelligence Based Structural Assessment for Regional Short-and Medium-Span Concrete Beam Bridges with Inspection Information. Remote Sens. 2021, 13, 3687. [Google Scholar] [CrossRef]
- Komarizadehasl, S.; Mobaraki, B.; Lozano-Galant, J.A.; Turmo, J. Development of a Low-Cost System for the Accurate Measurement of Structural Vibrations. Sensors 2021, 21, 6191. [Google Scholar] [CrossRef] [PubMed]
- Nestor, T.; De Dieu, N.J.; Jacques, K.; Yves, E.J.; Iliyasu, A.M.; Abd El-Latif, A.A. A Multidimensional Hyperjerk Oscillator: Dynamics Analysis, Analogue and Embedded Systems Implementation, and Its Application as a Cryptosystem. Sensors 2020, 20, 83. [Google Scholar] [CrossRef]
- Goh, N.W.J.; Poh, J.J.; Yeo, J.Y.; Aw, B.J.J.; Lai, S.C.; Cheng, J.J.W.; Tan, C.Y.L.; Gan, S.K.E. Design and Development of a Low Cost, Non-Contact Infrared Thermometer with Range Compensation. Sensors 2021, 21, 3817. [Google Scholar] [CrossRef]
- Luna, A.M.; Lineros, M.L.; Gualda, J.E.; Cervera, J.V.G.; Luna, J.M.M. Assessing the Best Gap-Filling Technique for River Stage Data Suitable for Low Capacity Processors and Real-Time Application Using Iot. Sensors 2020, 20, 6354. [Google Scholar] [CrossRef]
- Nemoto, T.; Mohan, R.E. Heterogeneous Multirobot Cleaning System: State and Parameter Estimation. Autom. Constr. 2020, 109, 102968. [Google Scholar] [CrossRef]
- Lockridge, G.; Dzwonkowski, B.; Nelson, R.; Powers, S. Development of a Low-Cost Arduino-Based Sonde for Coastal Applications. Sensors 2016, 16, 528. [Google Scholar] [CrossRef] [PubMed]
- Yedra Álvarez, E.; Ferrández Vega, D.; Saiz Martínez, P.; Morón Fernández, C. Low Cost System for Measuring the Evolution of Mechanical Properties in Cement Mortars as a Function of Mixing Water. Constr. Build. Mater. 2020, 244, 118127. [Google Scholar] [CrossRef]
- Frei, M.; Deb, C.; Stadler, R.; Nagy, Z.; Schlueter, A. Wireless Sensor Network for Estimating Building Performance. Autom. Constr. 2020, 111, 103043. [Google Scholar] [CrossRef]
- Arbabpour Bidgoli, M.; Golroo, A.; Sheikhzadeh Nadjar, H.; Ghelmani Rashidabad, A.; Ganji, M.R. Road Roughness Measurement Using a Cost-Effective Sensor-Based Monitoring System. Autom. Constr. 2019, 104, 140–152. [Google Scholar] [CrossRef]
- Rashid, K.M.; Louis, J.; Fiawoyife, K.K. Wireless Electric Appliance Control for Smart Buildings Using Indoor Location Tracking and BIM-Based Virtual Environments. Autom. Constr. 2019, 101, 48–58. [Google Scholar] [CrossRef]
- Dave, B.; Buda, A.; Nurminen, A.; Främling, K. A Framework for Integrating BIM and IoT through Open Standards. Autom. Constr. 2018, 95, 35–45. [Google Scholar] [CrossRef]
- Porras Soriano, R.; Mobaraki, B.; Lozano-Galant, J.A.; Sanchez-Cambronero, S.; Prieto Muñoz, F.; Gutierrez, J.J. New Image Recognition Technique for Intuitive Understanding in Class of the Dynamic Response of High-Rise Buildings. Sustainability 2021, 13, 3695. [Google Scholar] [CrossRef]
- Lucchi, E.; Pereira, L.D.; Andreotti, M.; Malaguti, R.; Cennamo, D.; Calzolari, M.; Frighi, V. Development of a Compatible, Low Cost and High Accurate Conservation Remote Sensing Technology for the Hygrothermal Assessment of Historic Walls. Electronics 2019, 8, 643. [Google Scholar] [CrossRef]
- Andreotti, M.; Calzolari, M.; Davoli, P.; Pereira, L.D.; Lucchi, E.; Malaguti, R. Design and Construction of a New Metering Hot Box for the in Situ Hygrothermal Measurement in Dynamic Conditions of Historic Masonries. Energies 2020, 13, 2950. [Google Scholar] [CrossRef]
- Mobaraki, B.; Lozano-Galant, F.; Soriano, R.P.; Pascual, F.J.C. Application of Low-Cost Sensors for Building Monitoring: A Systematic Literature Review. Buildings 2021, 11, 336. [Google Scholar] [CrossRef]
- Navarro, I.J.; Penadés-Plà, V.; Martínez-Muñoz, D.; Rempling, R.; Yepes, V. Life Cycle Sustainability Assessment for Multi-Criteria Decision Making in Bridge Design: A Review. J. Civ. Eng. Manag. 2020, 26, 690–704. [Google Scholar] [CrossRef]
- Tseng, K.H.; Chung, M.Y.; Chen, L.H.; Chang, P.Y. Green Smart Campus Monitoring and Detection Using LoRa. Sensors 2021, 21, 6582. [Google Scholar] [CrossRef] [PubMed]
- Assaf, E.; Einem, C.; Cadena, C.; Siegwart, R.; Tschopp, F. High-Precision Low-Cost Gimballing Platform for Long-Range Railway Obstacle Detection. Sensors 2022, 22, 474. [Google Scholar] [CrossRef]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. J. Sensors 2018, 2018, 5096540. [Google Scholar] [CrossRef]
- Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.J.; McLeod, M.W.; Hodgson, T.F.; Dicks, J.; et al. The Use of Electrochemical Sensors for Monitoring Urban Air Quality in Low-Cost, High-Density Networks. Atmos. Environ. 2013, 70, 186–203. [Google Scholar] [CrossRef]
- Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.P.; Lv, Q.; Hannigan, M.; et al. The next Generation of Low-Cost Personal Air Quality Sensors for Quantitative Exposure Monitoring. Atmos. Meas. Tech. 2014, 7, 3325–3336. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field Calibration of a Cluster of Low-Cost Available Sensors for Air Quality Monitoring. Part A: Ozone and Nitrogen Dioxide. Sens. Actuators B Chem. 2015, 215, 249–257. [Google Scholar] [CrossRef]
- Ali, A.S.; Zanzinger, Z.; Debose, D.; Stephens, B. Open Source Building Science Sensors (OSBSS): A Low-Cost Arduino-Based Platform for Long-Term Indoor Environmental Data Collection. Build. Environ. 2016, 100, 114–126. [Google Scholar] [CrossRef]
- Bamodu, O.; Xia, L.; Tang, L. An Indoor Environment Monitoring System Using Low-Cost Sensor Network. Energy Procedia 2017, 141, 660–666. [Google Scholar] [CrossRef]
- Mijling, B.; Jiang, Q.; De Jonge, D.; Bocconi, S. Field Calibration of Electrochemical NO2 Sensors in a Citizen Science Context. Atmos. Meas. Tech. 2018, 11, 1297–1312. [Google Scholar] [CrossRef]
- Mobaraki, B.; Komarizadehasl, S.; Castilla Pascual, F.J.; Lozano-galant, J.A.; Porras Soriano, R. A Novel Data Acquisition System for Obtaining Thermal Parameters of Building Envelopes. Buildings 2022, 12, 670. [Google Scholar] [CrossRef]
- Komarizadehasl, S.; Komary, M.; Alahmad, A.; Lozano-galant, J.A.; Ramos, G.; Turmo, J. A Novel Wireless Low-Cost Inclinometer Made from Combining the Measurements of Multiple MEMS Gyroscopes and Accelerometers. Sensors 2022, 22, 5605. [Google Scholar] [CrossRef] [PubMed]
- Mobaraki, B.; Vaghefi, M. Numerical Study of the Depth and Cross-Sectional Shape of Tunnel under Surface Explosion. Tunn. Undergr. Sp. Technol. 2015, 47, 114–122. [Google Scholar] [CrossRef]
- Mobaraki, B.; Vaghefi, M. Effect of the Soil Type on the Dynamic Response of a Tunnel under Surface Detonation. Combust. Explos. Shock Waves 2016, 52, 363–370. [Google Scholar] [CrossRef]
- Huerta, R.C.; Moreu, F.; Galant, J.A.L. Aerial Tramway Sustainable Monitoring with an Outdoor Low-Cost Efficientwireless Intelligent Sensor. Sustainability 2021, 13, 6340. [Google Scholar] [CrossRef]
- Xia, Y.; Lei, X.; Wang, P.; Sun, L. A Data-Driven Approach for Regional Bridge Condition Assessment Using Inspection Reports. Struct. Control Heal. Monit. 2021, e2915. [Google Scholar] [CrossRef]
- Xia, Y.; Lei, X.; Wang, P.; Liu, G.; Sun, L. Long-Term Performance Monitoring and Assessment of Concrete Beam Bridges Using Neutral Axis Indicator. Struct. Control Heal. Monit. 2020, 27, 1–18. [Google Scholar] [CrossRef]
- Marzouk, M.; Abdelaty, A. BIM-Based Framework for Managing Performance of Subway Stations. Autom. Constr. 2014, 41, 70–77. [Google Scholar] [CrossRef]
- Mobaraki, B.; Komarizadehasl, S.; Castilla Pascual, F.J.; Lozano-Galant, J.A. Open Source Platforms for Monitoring Thermal Parameters of Structures. In Proceedings of the Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations, Sapporo, Japan, 28 June–2 July 2020; pp. 3892–3896. [Google Scholar]
- dos Santos, U.J.L.; Pessin, G.; da Costa, C.A.; da Rosa Righi, R. AgriPrediction: A Proactive Internet of Things Model to Anticipate Problems and Improve Production in Agricultural Crops. Comput. Electron. Agric. 2019, 161, 202–213. [Google Scholar] [CrossRef]
- Suárez, J.I.; Arroyo, P.; Lozano, J.; Herrero, J.L.; Padilla, M. Bluetooth Gas Sensing Module Combined with Smartphones for Air Quality Monitoring. Chemosphere 2018, 205, 618–626. [Google Scholar] [CrossRef]
- Zhan, Q.; Pungercar, V.; Musso, F.; Ni, H.; Xiao, Y. Hygrothermal Investigation of Lightweight Steel-Framed Wall Assemblies in Hot-Humid Climates: Measurement and Simulation Validation. J. Build. Eng. 2021, 42, 103044. [Google Scholar] [CrossRef]
- Ibrahim, M.; Moselhi, O. Inertial Measurement Unit Based Indoor Localization for Construction Applications. Autom. Constr. 2016, 71, 13–20. [Google Scholar] [CrossRef]
- Netto, G.T.; Arigony-Neto, J. Open-Source Automatic Weather Station and Electronic Ablation Station for Measuring the Impacts of Climate Change on Glaciers. HardwareX 2019, 5, e00053. [Google Scholar] [CrossRef]
- Gauthier, S. Investigating the Probability of Behavioural Responses to Cold Thermal Discomfort. Energy Build. 2016, 124, 70–78. [Google Scholar] [CrossRef]
- Guo, H.; Ferrara, M.; Coleman, J.; Loyola, M.; Meggers, F. Simulation and Measurement of Air Temperatures and Mean Radiant Temperatures in a Radiantly Heated Indoor Space. Energy 2020, 193, 116369. [Google Scholar] [CrossRef]
- Mobaraki, B.; Komarizadehasl, S.; Javier, F.; Pascual, C.; Antonio, J. Determination of Environmental Parameters Based on Arduino Based Low-Cost Sensors. In Proceedings of the Recent Trends in Construction and Education RTCEE International Conference, Kuta, Indonesia, 15–17 July 2020; pp. 10–11. [Google Scholar]
- Friends-of-Fritzing Fritzing. Available online: https://fritzing.org/home/ (accessed on 1 August 2022).
- SE & Co. KGaA Testo. Available online: https://www.testo.com/en-US/ (accessed on 1 August 2022).
- Fluke Company. Available online: https://www.fluke.com/ (accessed on 1 August 2022).
- Bozdoğan, H. Species Richness and Composition of Neuroptera in the Forests Fregments of the Taurus Mountains Range, Turkey. Saudi J. Biol. Sci. 2020, 27, 1201–1207. [Google Scholar] [CrossRef]
- Baffa, M.D. Assessing Overall Thermal Conductance Value of Low-Rise Residential Home Exterior Above-Grade Walls Using Infrared Thermography Methods. Eng. Technol. Int. J. Civ. Environ. Eng. 2018, 12, 626–636. [Google Scholar]
- Quistin, P.; Fournely, E.; Bargy, J.; Cador, L.; Romana, L.; Quistin, P.; Fournely, E.; Bargy, J.; Cador, L.; Lamadon, T.; et al. Impact of Environment on Timber Structures, Bois Duramhen 971, the Case of Guadeloupe (F. W. I.). WCTE. 2019. Available online: https://hal.univ-antilles.fr/hal-02069472/document (accessed on 1 August 2022).
- Amini, M.; Pishevar, A.R.; Yaghoubi, M. Experimental Study of Frost Formation on a Fin-and-Tube Heat Exchanger by Natural Convection. Int. J. Refrig. 2014, 46, 37–49. [Google Scholar] [CrossRef]
- Markal, B.; Aydin, O.; Avci, M. An Experimental Study on the Effect of the Valve Angle of Counter-Flow Ranque-Hilsch Vortex Tubes on Thermal Energy Separation. Exp. Therm. Fluid Sci. 2010, 34, 966–971. [Google Scholar] [CrossRef]
- Extech. EXTECH EN510. Available online: https://www.extech.com/products/EN510 (accessed on 1 August 2022).
- IBM SPSS. Available online: https://www.ibm.com/analytics/spss-statistics-software/ (accessed on 1 August 2022).
- Pett, M. Nonparametric Statistics for Health Care Research, 2nd ed.; SAGE: London, UK, 2016. [Google Scholar]
- Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077. [Google Scholar] [CrossRef]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Electrobass. Available online: https://www.electrobassciudadreal.com/ (accessed on 1 August 2022).
Application | Sensor Type | Number of Sensors | Reference |
---|---|---|---|
Air quality | CO, NO, NO2 | 4 | [26] |
Air quality | MOx, SHT21, light sensor | 2 | [27] |
Air quality | CO, NO, O3, NO2 | 5 | [28] |
Indoor environmental monitoring | SHT15- NTC-TSLl2561-PARALLAX-SENSAIR K30- | 2 | [29] |
Indoor environmental monitoring | DHT11-DS18B20-LM35 | 3 | [30] |
Ambient NO2 monitoring | Alphasense cell | 16 | [31] |
Nº | Model | Detection Range (°C) | Accuracy (°C) | Resolution (°C) | Response Time (s) | Communication Protocol | Cost (EUR) | Reference |
---|---|---|---|---|---|---|---|---|
1 | DHT11 | [0 to 50] | 2 | 0.1 | 2 | Single wire/bus | 1.56 | [39] |
2 | DHT22 | [−40 to 80] | 0.5 | 0.1 | 2 | Single wire/bus | 5.40 | [47] |
3 | SHT10 | [−40 to 125] | 0.5 | 0.01 | 8 | I2C | 4.57 | [41] |
4 | SHT21 | [−40 to 125] | 0.3 | 0.01 | 8 | I2C | 4.61 | [42] |
5 | SHT35 | [−40 to 125] | 0.2 | 0.01 | 8 | I2C | 5.76 | [43] |
6 | BMP180 | [−40 to 85] | 2 | 0.1 | 0.0075 | I2C | 3.72 | [44] |
7 | BMP280 | [−40 to 85] | 1 | 0.01 | 0.55 | I2C and SPI | 3.59 | [45] |
8 | LM75 | [−55 to 125] | 1 | 0.1 | 0.5 | I2C | 2.80 | [46] |
System | Accuracy (°C) | Response Time (s) | Detection Range (°C) | Figure | Wire Connection to Arduino MEGA |
---|---|---|---|---|---|
BMP280 | 1.0 | 0.5500 | −40 to 85 | ||
BMP180 | 2.0 | 0.0075 | −40 to 85 | ||
DHT22 | 0.5 | 2.0000 | −40 to 80 | ||
SHT21 | 0.3 | 8.0000 | −40 to 125 | ||
SHT35 | 0.2 | 8.0000 | −40 to 125 |
Nº of Sensors | Nº of Arrangements | Time (min) |
---|---|---|
1 | 30 | 0.01 |
2 | 435 | 0.01 |
3 | 4060 | 0.02 |
4 | 27,405 | 0.09 |
5 | 142,506 | 0.50 |
6 | 593,775 | 4.28 |
7 | 2,035,800 | 19.22 |
8 | 5,852,925 | 28.16 |
Nº | Model | Accuracy (°C) | Range (°C) | Price (EUR ) | Reference |
---|---|---|---|---|---|
1 | PROTMEX MS6508 | 1.0 | [−20 to 60] | 50 to 60 | [52] |
2 | REED R6001 | 0.8 | [−20 to 60] | 130 to 150 | [53] |
3 | FLUKE 971 | 0.5 | [−20 to 60] | 350 to 500 | [54] |
4 | EL-USB-2 LASCAR (*) | 0.5 | [−35 to 80] | 50 to 100 | [55] |
5 | TESTO 435-3 (**) | 0.2 | [−25 to 75] | 750 to 1200 | [56] |
6 | EXTECH EN510 | 0.1 | [−100 to 1300] | 180 to 220 | [57] |
Monitoring System | |||||
---|---|---|---|---|---|
SHT35 | SHT21 | DHT22 | BMP280 | BMP180 | |
Mean | 25.68 | 26.08 | 25.43 | 25.64 | 25.79 |
SD. | 0.04 | 0.11 | 0.19 | 0.35 | 0.29 |
Min. | 25.60 | 25.84 | 25.00 | 25.18 | 25.18 |
Max. | 25.76 | 26.28 | 25.90 | 26.35 | 26.28 |
Std.Err.Sk | 0.43 | 0.43 | 0.43 | 0.43 | 0.427 |
Std.Err.Ku | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 |
Z-val.Sk | −0.65 | −0.57 | −0.37 | 1.07 | −0.74 |
Z-val.Ku | −1.08 | −0.42 | −0.05 | −1.40 | −0.81 |
SHT35 | SHT21 | |||
---|---|---|---|---|
Components | Price (EUR) | Nº | Price (EUR) | Nº |
Sensors | 5.76 | 3 | 4.61 | 11 |
Breadboard | 3.5 | 1 | 3.5 | 1 |
Arduino | 35.5 | 1 | 35.5 | 1 |
Multiplexer | 1.2 | 1 | 1.2 | 1 |
Clock Sensor | 1.3 | 1 | 1.3 | 1 |
Total Cost (EUR) | 58.8 | 92.1 |
SHT35 | BMP280 | |||
---|---|---|---|---|
Components | Price (EUR) | Nº | Price (EUR) | Nº |
Sensors | 5.7 | 3 | 3.6 | 4 |
Breadboard | 3.5 | 1 | 3.5 | 1 |
Arduino | 35.5 | 1 | 35.5 | 1 |
Multiplexer | 1.2 | 1 | 1.2 | 1 |
Clock Sensor | 1.3 | 1 | 1.3 | 1 |
Total Cost (EUR) | 58.6 | 55.9 |
Name | SHT35 | BMP280 | EXTECH EN510 | TESTO 435-3 | FLUKE 971 | EL-USB-2 LASCAR |
---|---|---|---|---|---|---|
Accuracy (°C) | 0.023 | 0.015 | 0.1 | 0.2 | 0.5 | 0.5 |
Range (°C) | [−40 to 125] | [−40 to 85] | [−100 to 1300] | [−25 to 75] | [−20 to 60] | [−35 to 80] |
Price (EUR) | 58.8 | 55.9 | 180 to 220 | 750 to 1000 | 350 to 500 | 50 to 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobaraki, B.; Komarizadehasl, S.; Castilla Pascual, F.J.; Lozano-Galant, J.A. Application of Low-Cost Sensors for Accurate Ambient Temperature Monitoring. Buildings 2022, 12, 1411. https://doi.org/10.3390/buildings12091411
Mobaraki B, Komarizadehasl S, Castilla Pascual FJ, Lozano-Galant JA. Application of Low-Cost Sensors for Accurate Ambient Temperature Monitoring. Buildings. 2022; 12(9):1411. https://doi.org/10.3390/buildings12091411
Chicago/Turabian StyleMobaraki, Behnam, Seyedmilad Komarizadehasl, Francisco Javier Castilla Pascual, and José Antonio Lozano-Galant. 2022. "Application of Low-Cost Sensors for Accurate Ambient Temperature Monitoring" Buildings 12, no. 9: 1411. https://doi.org/10.3390/buildings12091411
APA StyleMobaraki, B., Komarizadehasl, S., Castilla Pascual, F. J., & Lozano-Galant, J. A. (2022). Application of Low-Cost Sensors for Accurate Ambient Temperature Monitoring. Buildings, 12(9), 1411. https://doi.org/10.3390/buildings12091411