Human-in-the-Loop Optimization of Transcranial Electrical Stimulation at the Point of Care: A Computational Perspective
<p>(<b>a</b>) Long-term (≥3 min) transcranial electrical stimulation can change the interstitial concentration of potassium, modulating the neurovascular system’s sensitivity via Kir channels. (<b>b</b>) Four-compartment lumped physiological model of the neurovascular unit with nested pathways (dashed arrows) that can be perturbed by the tES current density, leading to vessel response in terms of diameter changes.</p> "> Figure 2
<p>Modal analysis approach used for evaluating the physiological model using MATLAB and Simulink (MathWorks Inc., Natick, MA, USA).</p> "> Figure 3
<p>Boxplot of the natural frequencies in the physiological frequency range of 0.01–0.2 Hz obtained through modal analysis for the four tES perturbation model pathways. On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the red “+” symbol.</p> "> Figure 4
<p>Stabilization diagrams obtained for the four tES perturbation pathways.</p> "> Figure 5
<p>Box-plots of HbT (μM) time series for 0–60 s of M1 tDCS (0–30 s ramp-up and 30–60 s steady-state) are shown at the (<b>A</b>) ipsilesional and (<b>B</b>) contralesional hemispheres. Four pathways fitted to fNIRS HbT time-series data at the (<b>C</b>) ipsilesional and (<b>D</b>) contralesional hemispheres are also shown.</p> "> Figure 6
<p>Boxplots of HbT (µM) time series for 0–60 s of ctDCS (0–30 s ramp-up and 30–60 s steady-state) are shown at the (<b>A</b>) ipsilesional and (<b>B</b>) contralesional hemispheres. Four pathways fitted to fNIRS HbT time-series data at the (<b>C</b>) ipsilesional and (<b>D</b>) contralesional hemispheres are also shown.</p> "> Figure 7
<p>Mean squared error (MSE) with M1 tDCS for HbT at the (<b>A</b>) ipsilesional and (<b>B</b>) contralesional hemispheres. MSE with ctDCS for HbT at the (<b>C</b>) ipsilesional and (<b>D</b>) contralesional hemispheres.</p> "> Figure 8
<p>Boxplots of filtered HbT (µM) time series for 0–60 s of M1 tDCS at the (<b>A</b>) ipsilesional and (<b>B</b>) contralesional hemispheres, and for ctDCS at the (<b>C</b>) ipsilesional and (<b>D</b>) contralesional hemispheres.</p> "> Figure 9
<p>(<b>a</b>) Sensitivity profile of the optode montage (red dots are sources at long separation and short separation from detectors; blue dots are detectors). The sensitivity values are displayed logarithmically, with a default range of 0.01 to 1, or −2 to 0 in log10 units; (<b>b</b>) 30 s ON–30 s OFF tDCS paradigm with 10 s ramp-up/10 s ramp-down—repeated 30 times in a block design.</p> "> Figure 10
<p>(<b>A</b>) Transcranial electrical stimulation (tES)--evoked arousal leads to changes in the pupil diameter as well as the vascular tone, affecting the evoked hemodynamic response. (<b>B</b>) An illustrative example of HbT responses in long-separation (LS) and short-separation (SS) fNIRS channels. LS HbT: long-separation total hemoglobin changes, SS HbT: short-separation total hemoglobin changes, tDCS => LS HbT response: transfer function response with tDCS waveform input and LS HbT output, tDCS => SS HbT response: transfer function response with tDCS waveform input and SS HbT output, SS HbT => LS HbT response: transfer function response with SS HbT input and LS HbT output, LS HbT--(SS HbT => LS HbT): SS HbT => LS HbT response subtracted from LS HbT.</p> "> Figure 11
<p>An illustrative model predictive control scheme.</p> "> Figure 12
<p>Human-in-the-loop optimization using a covariance matrix adaptation evolution strategy (CMA--ES): (<b>A</b>) tOCS parameters: DC intensity in mA (blue), AC amplitude in mA (red), and AC frequency in Hz (black). (<b>B</b>) tACS parameters: DC intensity = 0 mA (blue), AC amplitude in mA (red), and AC frequency in Hz (black). (<b>C</b>) Best cost (i.e., negative steady-state gain of HbT in M) for tOCS over 22 iterations of CMA--ES. (<b>D</b>) Best cost (HbT in M) for tACS over 22 iterations of CMA--ES.</p> "> Figure 12 Cont.
<p>Human-in-the-loop optimization using a covariance matrix adaptation evolution strategy (CMA--ES): (<b>A</b>) tOCS parameters: DC intensity in mA (blue), AC amplitude in mA (red), and AC frequency in Hz (black). (<b>B</b>) tACS parameters: DC intensity = 0 mA (blue), AC amplitude in mA (red), and AC frequency in Hz (black). (<b>C</b>) Best cost (i.e., negative steady-state gain of HbT in M) for tOCS over 22 iterations of CMA--ES. (<b>D</b>) Best cost (HbT in M) for tACS over 22 iterations of CMA--ES.</p> ">
Abstract
:1. Introduction
2. Modal Analysis of the Physiologically Detailed Neurovascular Model
3. Grey-Box Modeling of fNIRS of tDCS’s Effects—A Chronic Stroke Case Series
4. Black-Box Modeling of Prefrontal fNIRS–Pupillometry of the Effects of Short-Duration Frontal tDCS—A Healthy Case Series
5. Human-in-the-Loop Optimization for Model Predictive Control of tES-Evoked HbT
6. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vassilieva, A.; Olsen, M.H.; Peinkhofer, C.; Knudsen, G.M.; Kondziella, D. Automated Pupillometry to Detect Command Following in Neurological Patients: A Proof-of-Concept Study. PeerJ 2019, 7, e6929. [Google Scholar] [CrossRef] [PubMed]
- Olsen, M.H.; Jensen, H.R.; Ebdrup, S.R.; Topp, N.H.; Strange, D.G.; Møller, K.; Kondziella, D. Automated Pupillometry and the FOUR Score—What Is the Diagnostic Benefit in Neurointensive Care? Acta Neurochir. 2020, 162, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.H.; Bhattacharya, M.; Møller, K.; Kjeldsen, S.; Grand, J.; Kjaergaard, J.; Dutta, A.; Kondziella, D. Resting-State NIRS-EEG in Unresponsive Patients with Acute Brain Injury: A Proof-of-Concept Study. Neurocrit. Care 2020, 34, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Chougule, P.S.; Najjar, R.P.; Finkelstein, M.T.; Kandiah, N.; Milea, D. Light-Induced Pupillary Responses in Alzheimer’s Disease. Front. Neurol. 2019, 10, 360. [Google Scholar] [CrossRef]
- Chan, L.; Liao, Y.-C.; Mo, G.B.; Dudley, J.J.; Cheng, C.-L.; Kristensson, P.O.; Oulasvirta, A. Investigating Positive and Negative Qualities of Human-in-the-Loop Optimization for Designing Interaction Techniques. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 30 April–5 May 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–14. [Google Scholar]
- Dutta, A. Simultaneous Functional Near-Infrared Spectroscopy (FNIRS) and Electroencephalogram (EEG) to Elucidate Neurovascular Modulation by Transcranial Electrical Stimulation (TES). Brain Stimul. 2021, 14, 1093–1094. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Jacob, A.; Chowdhury, S.R.; Das, A.; Nitsche, M.A. EEG-NIRS Based Assessment of Neurovascular Coupling during Anodal Transcranial Direct Current Stimulation--a Stroke Case Series. J. Med. Syst. 2015, 39, 205. [Google Scholar] [CrossRef]
- Sood, M.; Besson, P.; Muthalib, M.; Jindal, U.; Perrey, S.; Dutta, A.; Hayashibe, M. NIRS-EEG Joint Imaging during Transcranial Direct Current Stimulation: Online Parameter Estimation with an Autoregressive Model. J. Neurosci. Methods 2016, 274, 71–80. [Google Scholar] [CrossRef]
- Arora, Y.; Walia, P.; Hayashibe, M.; Muthalib, M.; Chowdhury, S.R.; Perrey, S.; Dutta, A. Grey-Box Modeling and Hypothesis Testing of Functional near-Infrared Spectroscopy-Based Cerebrovascular Reactivity to Anodal High-Definition TDCS in Healthy Humans. PLoS Comput. Biol. 2021, 17, e1009386. [Google Scholar] [CrossRef]
- Guhathakurta, D.; Dutta, A. Computational Pipeline for NIRS-EEG Joint Imaging of TDCS-Evoked Cerebral Responses—An Application in Ischemic Stroke. Front. Neurosci. 2016, 10, 261. [Google Scholar] [CrossRef]
- Schmid, P.J. Dynamic Mode Decomposition and Its Variants. Annu. Rev. Fluid Mech. 2022, 54, 225–254. [Google Scholar] [CrossRef]
- Stefanovska, A.; Bracic, M.; Kvernmo, H.D. Wavelet Analysis of Oscillations in the Peripheral Blood Circulation Measured by Laser Doppler Technique. IEEE Trans. Biomed. Eng. 1999, 46, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Mishima, T.; Nagai, T.; Yahagi, K.; Akther, S.; Oe, Y.; Monai, H.; Kohsaka, S.; Hirase, H. Transcranial Direct Current Stimulation (TDCS) Induces Adrenergic Receptor-Dependent Microglial Morphological Changes in Mice. eNeuro 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Wahl, M.; Kuschinsky, W.; Bosse, O.; Olesen, J.; Lassen, N.A.; Ingvar, D.H.; Michaelis, J.; Thurau, K. Effect of I-Norepinephrine on the Diameter of Pial Arterioles and Arteries in the Cat. Circ. Res. 1972, 31, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, X.; Gong, H.; Jiang, B.; Wang, H.; Xu, G.; Deng, Y. Assessing the Effects of Norepinephrine on Single Cerebral Microvessels Using Optical-Resolution Photoacoustic Microscope. J. Biomed. Opt. 2013, 18, 076007. [Google Scholar] [CrossRef]
- Fonseca, D.A.; Antunes, P.E.; Antunes, M.J.; Cotrim, M.D. Vasomotion as an Oscillatory Sign of Functional Impairment in the Human Internal Thoracic Artery: A Study Based on Risk Factors and Vessel Reactivity. Exp. Physiol. 2018, 103, 1030–1038. [Google Scholar] [CrossRef]
- Sharp, M.K.; Diem, A.K.; Weller, R.O.; Carare, R.O. Peristalsis with Oscillating Flow Resistance: A Mechanism for Periarterial Clearance of Amyloid Beta from the Brain. Ann. Biomed. Eng. 2016, 44, 1553–1565. [Google Scholar] [CrossRef]
- Hladky, S.B.; Barrand, M.A. Elimination of Substances from the Brain Parenchyma: Efflux via Perivascular Pathways and via the Blood–Brain Barrier. Fluids Barriers CNS 2018, 15, 30. [Google Scholar] [CrossRef]
- Geddes, J.B.; Carr, R.T.; Wu, F.; Lao, Y.; Maher, M. Blood Flow in Microvascular Networks: A Study in Nonlinear Biology. Chaos 2010, 20, 045123. [Google Scholar] [CrossRef]
- Zhao, F.; Tomita, M.; Dutta, A. Functional Near-Infrared Spectroscopy of Prefrontal Cortex During Memory Encoding and Recall in Elderly With Type 2 Diabetes Mellitus. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022. [Google Scholar] [CrossRef]
- Kisler, K.; Nelson, A.R.; Montagne, A.; Zlokovic, B.V. Cerebral Blood Flow Regulation and Neurovascular Dysfunction in Alzheimer Disease. Nat. Rev. Neurosci. 2017, 18, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Li, H.; Wardlaw, J.M.; Wang, Y. A New Dawn of Preventing Dementia by Preventing Cerebrovascular Diseases. BMJ 2020, 371, m3692. [Google Scholar] [CrossRef]
- Zheng, X.; Alsop, D.C.; Schlaug, G. Effects of Transcranial Direct Current Stimulation (TDCS) on Human Regional Cerebral Blood Flow. NeuroImage 2011, 58, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Jindal, U.; Sood, M.; Dutta, A.; Chowdhury, S.R. Development of Point of Care Testing Device for Neurovascular Coupling from Simultaneous Recording of EEG and NIRS During Anodal Transcranial Direct Current Stimulation. IEEE J. Transl. Eng. Health Med. 2015, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mijajlović, M.D.; Pavlović, A.; Brainin, M.; Heiss, W.-D.; Quinn, T.J.; Ihle-Hansen, H.B.; Hermann, D.M.; Assayag, E.B.; Richard, E.; Thiel, A.; et al. Post-Stroke Dementia—A Comprehensive Review. BMC Med. 2017, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Shabir, O.; Berwick, J.; Francis, S.E. Neurovascular Dysfunction in Vascular Dementia, Alzheimer’s and Atherosclerosis. BMC Neurosci. 2018, 19, 62. [Google Scholar] [CrossRef] [PubMed]
- Binkofski, F.; Loebig, M.; Jauch-Chara, K.; Bergmann, S.; Melchert, U.H.; Scholand-Engler, H.G.; Schweiger, U.; Pellerin, L.; Oltmanns, K.M. Brain Energy Consumption Induced by Electrical Stimulation Promotes Systemic Glucose Uptake. Biol. Psychiatr. 2011, 70, 690–695. [Google Scholar] [CrossRef]
- Scholey, A.B.; Harper, S.; Kennedy, D.O. Cognitive Demand and Blood Glucose. Physiol. Behav. 2001, 73, 585–592. [Google Scholar] [CrossRef]
- Dienel, G.A.; Cruz, N.F. Aerobic Glycolysis during Brain Activation: Adrenergic Regulation and Influence of Norepinephrine on Astrocytic Metabolism. J. Neurochem. 2016, 138, 14–52. [Google Scholar] [CrossRef]
- Bekar, L.K.; Wei, H.S.; Nedergaard, M. The Locus Coeruleus-Norepinephrine Network Optimizes Coupling of Cerebral Blood Volume with Oxygen Demand. J. Cereb. Blood Flow Metab. 2012, 32, 2135–2145. [Google Scholar] [CrossRef]
- Montefusco-Siegmund, R.; Schwalm, M.; Jubal, E.R.; Devia, C.; Egaña, J.I.; Maldonado, P.E. Alpha EEG Activity and Pupil Diameter Coupling during Inactive Wakefulness in Humans. eNeuro 2022, 9. [Google Scholar] [CrossRef]
- Vanneste, S.; Mohan, A.; Yoo, H.B.; Huang, Y.; Luckey, A.M.; McLeod, S.L.; Tabet, M.N.; Souza, R.R.; McIntyre, C.K.; Chapman, S.; et al. The Peripheral Effect of Direct Current Stimulation on Brain Circuits Involving Memory. Sci. Adv. 2020, 6, eaax9538. [Google Scholar] [CrossRef]
- Rezaee, Z.; Ranjan, S.; Solanki, D.; Bhattacharya, M.; Srivastava, M.V.P.; Lahiri, U.; Dutta, A. Feasibility of Combining Functional Near-Infrared Spectroscopy with Electroencephalography to Identify Chronic Stroke Responders to Cerebellar Transcranial Direct Current Stimulation-a Computational Modeling and Portable Neuroimaging Methodological Study. Cerebellum 2021, 20, 853–871. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.S.; Waters, J. Neuromodulatory Correlates of Pupil Dilation. Front. Neural Circuits 2018, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Diehl, R.R.; Linden, D.; Lücke, D.; Berlit, P. Phase Relationship between Cerebral Blood Flow Velocity and Blood Pressure. A Clinical Test of Autoregulation. Stroke 1995, 26, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Jamil, A.; Batsikadze, G.; Kuo, H.-I.; Meesen, R.L.J.; Dechent, P.; Paulus, W.; Nitsche, M.A. Current Intensity- and Polarity-Specific Online and Aftereffects of Transcranial Direct Current Stimulation: An FMRI Study. Hum. Brain Mapp. 2020, 41, 1644–1666. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.A.; Degan, S.; Galeffi, F.; Schmidt, S.; Peterchev, A.V. Rapid, Dose-Dependent Enhancement of Cerebral Blood Flow by Transcranial AC Stimulation in Mouse. Brain Stimul. 2021, 14, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Riddle, J.; Frohlich, F. Targeting Neural Oscillations with Transcranial Alternating Current Stimulation. Brain Res. 2021, 1765, 147491. [Google Scholar] [CrossRef]
- Zhang, J.H.; Badaut, J.; Tang, J.; Obenaus, A.; Hartman, R.; Pearce, W.J. The Vascular Neural Network—A New Paradigm in Stroke Pathophysiology. Nat. Rev. Neurol. 2012, 8, 711–716. [Google Scholar] [CrossRef]
- Jolivet, R.; Coggan, J.S.; Allaman, I.; Magistretti, P.J. Multi-Timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble. PLoS Comput. Biol. 2015, 11, e1004036. [Google Scholar] [CrossRef]
- Bozzo, L.; Puyal, J.; Chatton, J.-Y. Lactate Modulates the Activity of Primary Cortical Neurons through a Receptor-Mediated Pathway. PLoS ONE 2013, 8, e71721. [Google Scholar] [CrossRef]
- Mosienko, V.; Teschemacher, A.G.; Kasparov, S. Is L-Lactate a Novel Signaling Molecule in the Brain? J. Cereb. Blood Flow Metab. 2015, 35, 1069–1075. [Google Scholar] [CrossRef]
- Workman, C.D.; Fietsam, A.C.; Ponto, L.L.B.; Kamholz, J.; Rudroff, T. Individual Cerebral Blood Flow Responses to Transcranial Direct Current Stimulation at Various Intensities. Brain Sci. 2020, 10, 855. [Google Scholar] [CrossRef] [PubMed]
- Schmid, F.; Barrett, M.J.P.; Jenny, P.; Weber, B. Vascular Density and Distribution in Neocortex. NeuroImage 2019, 197, 792–805. [Google Scholar] [CrossRef]
- Arora, Y.; Chowdhury, S.R.; Dutta, A. Physiological Neurovascular Modeling of Cerebrovascular Effects of Transcranial Electrical Current Stimulation. Brain Stimul. 2021, 14, 1597–1598. [Google Scholar] [CrossRef]
- Hansen, N. The CMA Evolution Strategy: A Tutorial. arXiv 2016, arXiv:1604.00772. [Google Scholar]
- Glück, C.; Ferrari, K.D.; Binini, N.; Keller, A.; Saab, A.S.; Stobart, J.L.; Weber, B. Distinct Signatures of Calcium Activity in Brain Mural Cells. eLife 2021, 10, e70591. [Google Scholar] [CrossRef]
- Moshkforoush, A.; Ashenagar, B.; Harraz, O.F.; Dabertrand, F.; Longden, T.A.; Nelson, M.T.; Tsoukias, N.M. The Capillary Kir Channel as Sensor and Amplifier of Neuronal Signals: Modeling Insights on K+-Mediated Neurovascular Communication. Proc. Natl. Acad. Sci. USA 2020, 117, 16626–16637. [Google Scholar] [CrossRef]
- Tarantini, S.; Tran, C.H.T.; Gordon, G.R.; Ungvari, Z.; Csiszar, A. Impaired Neurovascular Coupling in Aging and Alzheimer’s Disease: Contribution of Astrocyte Dysfunction and Endothelial Impairment to Cognitive Decline. Exp. Gerontol. 2017, 94, 52–58. [Google Scholar] [CrossRef]
- Moore, C.I.; Cao, R. The Hemo-Neural Hypothesis: On the Role of Blood Flow in Information Processing. J. Neurophysiol. 2008, 99, 2035–2047. [Google Scholar] [CrossRef]
- Transcranial Electrical Stimulation Effects on Neurovascular Coupling. Available online: https://www.researchsquare.com (accessed on 11 March 2022).
- Mosayebi-Samani, M.; Jamil, A.; Salvador, R.; Ruffini, G.; Haueisen, J.; Nitsche, M.A. The Impact of Individual Electrical Fields and Anatomical Factors on the Neurophysiological Outcomes of TDCS: A TMS-MEP and MRI Study. Brain Stimul. 2021, 14, 316–326. [Google Scholar] [CrossRef]
- Witthoft, A.; Karniadakis, G.E. A Bidirectional Model for Communication in the Neurovascular Unit. J. Theor. Biol. 2012, 311, 80–93. [Google Scholar] [CrossRef]
- Dutta, A. Bidirectional Interactions between Neuronal and Hemodynamic Responses to Transcranial Direct Current Stimulation (TDCS): Challenges for Brain-State Dependent TDCS. Front. Syst. Neurosci. 2015, 9, 107. [Google Scholar] [CrossRef] [PubMed]
- Duffin, J.; Sobczyk, O.; McKetton, L.; Crawley, A.; Poublanc, J.; Venkatraghavan, L.; Sam, K.; Mutch, W.A.; Mikulis, D.; Fisher, J.A. Cerebrovascular Resistance: The Basis of Cerebrovascular Reactivity. Front. Neurosci. 2018, 12, 409. [Google Scholar] [CrossRef] [PubMed]
- Bouma, G.J.; Muizelaar, J.P. Cerebral Blood Flow, Cerebral Blood Volume, and Cerebrovascular Reactivity after Severe Head Injury. J. Neurotrauma. 1992, 9 (Suppl. 1), S333–S348. [Google Scholar] [PubMed]
- Markus, H.; Cullinane, M. Severely Impaired Cerebrovascular Reactivity Predicts Stroke and TIA Risk in Patients with Carotid Artery Stenosis and Occlusion. Brain 2001, 124, 457–467. [Google Scholar] [CrossRef]
- Bahr-Hosseini, M.; Bikson, M. Neurovascular-Modulation: A Review of Primary Vascular Responses to Transcranial Electrical Stimulation as a Mechanism of Action. Brain Stimul. 2021, 14, 837–847. [Google Scholar] [CrossRef]
- Jurcak, V.; Tsuzuki, D.; Dan, I. 10/20, 10/10, and 10/5 Systems Revisited: Their Validity as Relative Head-Surface-Based Positioning Systems. NeuroImage 2007, 34, 1600–1611. [Google Scholar] [CrossRef]
- Rezaee, Z.; Kaura, S.; Solanki, D.; Dash, A.; Srivastava, M.V.P.; Lahiri, U.; Dutta, A. Deep Cerebellar Transcranial Direct Current Stimulation of the Dentate Nucleus to Facilitate Standing Balance in Chronic Stroke Survivors—A Pilot Study. Brain Sci. 2020, 10, 94. [Google Scholar] [CrossRef]
- Huang, Y.; Datta, A.; Bikson, M.; Parra, L.C. Realistic Volumetric-Approach to Simulate Transcranial Electric Stimulation—ROAST—A Fully Automated Open-Source Pipeline. J. Neural Eng. 2019, 16, 056006. [Google Scholar] [CrossRef]
- Aasted, C.M.; Yücel, M.A.; Cooper, R.J.; Dubb, J.; Tsuzuki, D.; Becerra, L.; Petkov, M.P.; Borsook, D.; Dan, I.; Boas, D.A. Anatomical Guidance for Functional Near-Infrared Spectroscopy: AtlasViewer Tutorial. Neurophotonics 2015, 2, 020801. [Google Scholar] [CrossRef]
- Jahani, S.; Setarehdan, S.K.; Boas, D.A.; Yücel, M.A. Motion Artifact Detection and Correction in Functional Near-Infrared Spectroscopy: A New Hybrid Method Based on Spline Interpolation Method and Savitzky–Golay Filtering. Neurophotonics 2018, 5, 015003. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.J.; Mechelli, A.; Turner, R.; Price, C.J. Nonlinear Responses in FMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics. NeuroImage 2000, 12, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Florian, G.; Pfurtscheller, G. Elimination von Atmungseffekten Auf Bewegungsinduzierte Änderungen Der Herzrate—Elimination of Respiratory Effects on Movement-Induced Cardiac Response. Biomed. Eng. 1997, 42, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Excitability Changes Induced in the Human Motor Cortex by Weak Transcranial Direct Current Stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Steffener, J.; Tabert, M.; Reuben, A.; Stern, Y. Investigating Hemodynamic Response Variability at the Group Level Using Basis Functions. NeuroImage 2010, 49, 2113–2122. [Google Scholar] [CrossRef] [PubMed]
- Tgavalekos, K.; Pham, T.; Krishnamurthy, N.; Sassaroli, A.; Fantini, S. Frequency-Resolved Analysis of Coherent Oscillations of Local Cerebral Blood Volume, Measured with near-Infrared Spectroscopy, and Systemic Arterial Pressure in Healthy Human Subjects. PLoS ONE 2019, 14, e0211710. [Google Scholar] [CrossRef]
- List, J.; Lesemann, A.; Kübke, J.C.; Külzow, N.; Schreiber, S.J.; Flöel, A. Impact of TDCS on Cerebral Autoregulation in Aging and in Patients with Cerebrovascular Diseases. Neurology 2015, 84, 626–628. [Google Scholar] [CrossRef] [PubMed]
- Luckey, A.M.; McLeod, S.L.; Robertson, I.H.; To, W.T.; Vanneste, S. Greater Occipital Nerve Stimulation Boosts Associative Memory in Older Individuals: A Randomized Trial. Neurorehabilit. Neural Repair 2020, 34, 1020–1029. [Google Scholar] [CrossRef]
- Fonteneau, C.; Mondino, M.; Arns, M.; Baeken, C.; Bikson, M.; Brunoni, A.R.; Burke, M.J.; Neuvonen, T.; Padberg, F.; Pascual-Leone, A.; et al. Sham TDCS: A Hidden Source of Variability? Reflections for Further Blinded, Controlled Trials. Brain Stimul. 2019, 12, 668–673. [Google Scholar] [CrossRef]
- Nardo, D.; Creasey, M.; Negus, C.; Pappa, K.; Reid, A.; Josephs, O.; Callaghan, M.F.; Crinion, J.T. Transcranial Direct Current Stimulation with Functional Magnetic Resonance Imaging: A Detailed Validation and Operational Guide. Wellcome Open Res. 2021, 6, 143. [Google Scholar] [CrossRef]
- Dierkes, K.; Kassner, M.; Bulling, A. A Fast Approach to Refraction-Aware Eye-Model Fitting and Gaze Prediction. In Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications, Denver, CO, USA, 25–28 June 2019. [Google Scholar] [CrossRef]
- Hoeks, B.; Levelt, W.J.M. Pupillary Dilation as a Measure of Attention: A Quantitative System Analysis. Behav. Res. Methods Instrum. Comput. 1993, 25, 16–26. [Google Scholar] [CrossRef]
- Ozen, S.; Sirota, A.; Belluscio, M.A.; Anastassiou, C.A.; Stark, E.; Koch, C.; Buzsáki, G. Transcranial Electric Stimulation Entrains Cortical Neuronal Populations in Rats. J. Neurosci. 2010, 30, 11476–11485. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.A.; Stitt, I.M.; Negahbani, E.; Passey, D.J.; Ahn, S.; Davey, M.; Dannhauer, M.; Doan, T.T.; Hoover, A.C.; Peterchev, A.V.; et al. Transcranial Alternating Current Stimulation Entrains Alpha Oscillations by Preferential Phase Synchronization of Fast-Spiking Cortical Neurons to Stimulation Waveform. Nat. Commun. 2021, 12, 3151. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.; Galetta, S. Editors’ Note: Disruption of the Ascending Arousal Network in Acute Traumatic Disorders of Consciousness. Neurology 2020, 95, 233. [Google Scholar] [CrossRef]
- Huntley, J.D.; Fleming, S.M.; Mograbi, D.C.; Bor, D.; Naci, L.; Owen, A.M.; Howard, R. Understanding Alzheimer’s Disease as a Disorder of Consciousness. Alzheimer’s Dement. 2021, 7, e12203. [Google Scholar] [CrossRef] [PubMed]
- Harik, S.I.; Busto, R.; Martinez, E. Norepinephrine Regulation of Cerebral Glycogen Utilization during Seizures and Ischemia. J. Neurosci. 1982, 2, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Monai, H.; Koketsu, S.; Shinohara, Y.; Ueki, T.; Kusk, P.; Hauglund, N.L.; Samson, A.J.; Nedergaard, M.; Hirase, H. Adrenergic Inhibition Facilitates Normalization of Extracellular Potassium after Cortical Spreading Depolarization. Sci. Rep. 2021, 11, 8150. [Google Scholar] [CrossRef] [PubMed]
- Moheet, A.; Mangia, S.; Seaquist, E. Impact of Diabetes on Cognitive Function and Brain Structure. Ann. N. Y. Acad. Sci. 2015, 1353, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Ocon, A.J. Caught in the Thickness of Brain Fog: Exploring the Cognitive Symptoms of Chronic Fatigue Syndrome. Front. Physiol. 2013, 4, 63. [Google Scholar] [CrossRef]
- Batsikadze, G.; Moliadze, V.; Paulus, W.; Kuo, M.-F.; Nitsche, M.A. Partially Non-Linear Stimulation Intensity-Dependent Effects of Direct Current Stimulation on Motor Cortex Excitability in Humans. J. Physiol. 2013, 591, 1987–2000. [Google Scholar] [CrossRef]
- Han, C.-H.; Song, H.; Kang, Y.-G.; Kim, B.-M.; Im, C.-H. Hemodynamic Responses in Rat Brain during Transcranial Direct Current Stimulation: A Functional Near-Infrared Spectroscopy Study. Biomed. Opt. Express 2014, 5, 1812–1821. [Google Scholar] [CrossRef]
- MacVicar, B.A.; Newman, E.A. Astrocyte Regulation of Blood Flow in the Brain. Cold Spring Harb. Perspect. Biol. 2015, 7, a020388. [Google Scholar] [CrossRef] [PubMed]
- Monai, H.; Ohkura, M.; Tanaka, M.; Oe, Y.; Konno, A.; Hirai, H.; Mikoshiba, K.; Itohara, S.; Nakai, J.; Iwai, Y.; et al. Calcium Imaging Reveals Glial Involvement in Transcranial Direct Current Stimulation-Induced Plasticity in Mouse Brain. Nat. Commun. 2016, 7, 11100. [Google Scholar] [CrossRef]
- Petzold, G.C.; Murthy, V.N. Role of Astrocytes in Neurovascular Coupling. Neuron 2011, 71, 782–797. [Google Scholar] [CrossRef] [PubMed]
- Wachter, D.; Wrede, A.; Schulz-Schaeffer, W.; Taghizadeh-Waghefi, A.; Nitsche, M.A.; Kutschenko, A.; Rohde, V.; Liebetanz, D. Transcranial Direct Current Stimulation Induces Polarity-Specific Changes of Cortical Blood Perfusion in the Rat. Exp. Neurol. 2011, 227, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Mielke, D.; Wrede, A.; Schulz-Schaeffer, W.; Taghizadeh-Waghefi, A.; Nitsche, M.A.; Rohde, V.; Liebetanz, D. Cathodal Transcranial Direct Current Stimulation Induces Regional, Long-Lasting Reductions of Cortical Blood Flow in Rats. Neurol. Res. 2013, 35, 1029–1037. [Google Scholar] [CrossRef]
- Karanth, S.S.; Mujumdar, R.; Sahoo, J.P.; Das, A.; Stachowiak, M.K.; Dutta, A. Human Brain Organoid Platform for Neuroengineering Optical Theranostics in Neonatal Sepsis. In Converging Clinical and Engineering Research on Neurorehabilitation IV, Proceedings of the 5th International Conference on Neurorehabilitation (ICNR2020), October 13–16, 2020; Torricelli, D., Akay, M., Pons, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 753–757. [Google Scholar]
- Krause, B.; Kadosh, R.C. Not All Brains Are Created Equal: The Relevance of Individual Differences in Responsiveness to Transcranial Electrical Stimulation. Front. Syst. Neurosci. 2014, 8, 25. [Google Scholar] [CrossRef]
- Kathuria, A.; Lopez-Lengowski, K.; Jagtap, S.S.; McPhie, D.; Perlis, R.H.; Cohen, B.M.; Karmacharya, R. Transcriptomic Landscape and Functional Characterization of Induced Pluripotent Stem Cell–Derived Cerebral Organoids in Schizophrenia. JAMA Psychiatr. 2020, 77, 745–754. [Google Scholar] [CrossRef]
- Zhang, L.; Su, F.; Buizer, S.; Lu, H.; Gao, W.; Tian, Y.; Meldrum, D. A Dual Sensor for Real-Time Monitoring of Glucose and Oxygen. Biomaterials 2013, 34, 9779–9788. [Google Scholar] [CrossRef]
- Tong, L.; Hill, R.A.; Damisah, E.C.; Murray, K.N.; Yuan, P.; Bordey, A.; Grutzendler, J. Imaging and Optogenetic Modulation of Vascular Mural Cells in the Live Brain. Nat. Protoc. 2021, 16, 472–496. [Google Scholar] [CrossRef]
Name | Age (years) | Gender | Post-Stroke Period (years) | Affected Hemisphere (Middle Cerebral Artery Stroke) | tDCS Target |
---|---|---|---|---|---|
P1 | 44 | Male | 2 | Left | Cerebellar |
P2 | 53 | Male | 3 | Left | Cerebellar |
P3 | 40 | Male | 1 | Right | Cerebellar |
P4 | 38 | Male | 1 | Left | Cerebellar |
P5 | 32 | Male | 1 | Left | Cerebellar |
P6 | 50 | Male | 2 | Right | Cerebellar |
P7 | 31 | Male | 6 | Right | M1 |
P8 | 63 | Male | 5 | Left | M1 |
P9 | 73 | Male | 4 | Left | M1 |
P10 | 76 | Female | 5 | Right | M1 |
(a) tDCS2HbT | Subject 1 | Subject 2 | Subject 3 | Subject 4 | Subject 5 | Mean | stdev |
---|---|---|---|---|---|---|---|
RiseTime | 2.4 | 2.3 | 2.2 | 2.5 | 3.3 | 2.54 | 0.439318 |
SettlingTime | 9.6 | 8.7 | 9.9 | 10.4 | 9.4 | 9.6 | 0.62849 |
SettlingMin | 0.2187 | 0.2544 | 0.2882 | 0.1615 | 0.1351 | 0.21158 | 0.063467 |
SettlingMax | 0.5878 | 0.6019 | 0.5944 | 0.587 | 0.5628 | 0.58678 | 0.014687 |
Overshoot | 0.7288 | 12.9567 | 7.6098 | 0.118 | 0.2432 | 4.3313 | 5.757355 |
Undershoot | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Peak | 0.5878 | 0.6019 | 0.5944 | 0.587 | 0.5628 | 0.58678 | 0.014687 |
PeakTime | 4 | 4.6 | 4.1 | 14.6 | 14.2 | 8.3 | 5.574944 |
(b) tDCS2PD | Subject 1 | Subject 2 | Subject 3 | Subject 4 | Subject 5 | Mean | stdev |
RiseTime | 14.2 | 3.5 | 8.3 | 8.5 | 1.3 | 7.16 | 5.00979 |
SettlingTime | 16.1 | 11.3 | 19.2 | 12 | 13.9 | 14.5 | 3.221025 |
SettlingMin | 0.6813 | 0.5992 | 0.7907 | 0.6583 | 0.2203 | 0.58996 | 0.21797 |
SettlingMax | 0.7559 | 0.665 | 0.8782 | 0.7285 | 0.7287 | 0.75126 | 0.078427 |
Overshoot | 0 | 0.665 | 0 | 0 | 0.1329 | 0.15958 | 0.288339 |
Undershoot | 225.1942 | 127.3642 | 14.2983 | 0 | 0 | 73.37134 | 100.2768 |
Peak | 1.7037 | 0.8472 | 0.8782 | 0.7285 | 0.7287 | 0.97726 | 0.411736 |
PeakTime | 4.5 | 4.2 | 53.9 | 18.6 | 20.7 | 20.38 | 20.25357 |
(c) PD2HbT | Subject 1 | Subject 2 | Subject 3 | Subject 4 | Subject 5 | Mean | stdev |
RiseTime | 11.7 | 7.5 | 6.5 | 10.6 | 13.8 | 10.02 | 3.007823 |
SettlingTime | 20.6 | 14.1 | 11 | 19.3 | 25.8 | 18.16 | 5.77434 |
SettlingMin | 0.6935 | 0.738 | 0.568 | 0.7148 | 0.6868 | 0.68022 | 0.065855 |
SettlingMax | 0.769 | 0.819 | 0.629 | 0.7922 | 0.762 | 0.75424 | 0.073481 |
Overshoot | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Undershoot | 0.5904 | 0.4861 | 0 | 4.4144 | 0 | 1.09818 | 1.873619 |
Peak | 0.769 | 0.819 | 0.629 | 0.7922 | 0.762 | 0.75424 | 0.073481 |
PeakTime | 33.9 | 25.6 | 17.9 | 50.7 | 47.9 | 35.2 | 14.09503 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arora, Y.; Dutta, A. Human-in-the-Loop Optimization of Transcranial Electrical Stimulation at the Point of Care: A Computational Perspective. Brain Sci. 2022, 12, 1294. https://doi.org/10.3390/brainsci12101294
Arora Y, Dutta A. Human-in-the-Loop Optimization of Transcranial Electrical Stimulation at the Point of Care: A Computational Perspective. Brain Sciences. 2022; 12(10):1294. https://doi.org/10.3390/brainsci12101294
Chicago/Turabian StyleArora, Yashika, and Anirban Dutta. 2022. "Human-in-the-Loop Optimization of Transcranial Electrical Stimulation at the Point of Care: A Computational Perspective" Brain Sciences 12, no. 10: 1294. https://doi.org/10.3390/brainsci12101294
APA StyleArora, Y., & Dutta, A. (2022). Human-in-the-Loop Optimization of Transcranial Electrical Stimulation at the Point of Care: A Computational Perspective. Brain Sciences, 12(10), 1294. https://doi.org/10.3390/brainsci12101294