Easy-to-Operate Co-Flow Step Emulsification Device for High-Throughput Three-Dimensional Cell Culture
<p>Typical microfluidic 3D cell culture methods: (<b>a</b>,<b>b</b>) hanging drop; (<b>c</b>) T-junction; (<b>d</b>) flow-focusing; (<b>e</b>) coxial flow; (<b>f</b>) co-flow step emulsification (CFSE).</p> "> Figure 2
<p>Punching fabrication. (<b>a</b>) I: Schematic diagram of the punching operation (<b>b</b>) Three typical illustrations of the step microstructures. I: The cylindrical hole is below the central line of the straight microchannel. II: The cylindrical hole is right on the central line of the straight microchannel. III: The cylindrical hole is above the central line of the straight microchannel. (<b>c</b>) Microscopic images of the step boundaries, corresponding to the illustrations above. It is worth noting that the bio-puncher can smoothly cut the straight channels without edge-tearing or cracking.</p> "> Figure 3
<p>CFSE-based droplet generation. (<b>a</b>) Schematic of the 3D cell culture system. I: The system consists of a micropump, pressure controller, fluid tubes, CFSE chip, and inverted microscope; II: Schematic diagram of the “co-flow step emulsification”. (<b>b</b>) Optical photograph of the microfluidic CFSE device. I: Cell medium and oil were pumped into the microchannels; II: The cell medium broke into emulsion droplets. (<b>c</b>) Cell clusters in medium (I) and in droplets (II). (<b>d</b>) The resulting droplets bulk the cylindrical reservoir within several minutes with an ultra-high-volume fraction (φ = 72%, Q<sub>inner-phase</sub> = 1.28 μL/min, Q<sub>outer-phase</sub> = 0.49 μL/min, <span class="html-italic">Φ</span> = 80.38 ± 2.18 μm). I–VI shows the droplet perfusion process in the cylindrical storage reservoir in 30 seconds. (<b>e</b>) The close-packed droplet arrays arrange themselves in a hexagonal pattern. I–VI demonstrate the droplet arrays of six layers arranged from top to bottom. VII demonstrates the stacked status of the droplet arrays.</p> "> Figure 4
<p>Investigation of the CFSE-based 3D cell culture system. (<b>a</b>) Time-dependence of droplet numbers. (<b>b</b>) Plot of emulsion droplet diameter as a function of running time, to show the time-stability of the microfluidic CFSE device. The cell medium and oil flow rates were set at 1.28 μL/min and 0.49 μL/min. (<b>c</b>) Measured diameters of the droplets were plotted against the different cell medium flowrate conditions. The inset microscopic images show the droplets with diameters of 62.62 ± 1.95 μm and 91.09 ± 2.26 μm, respectively. (<b>d</b>) The relationship between cell number per droplet and cell density in the medium. (<b>e</b>) Illustration and microscopic images of the proliferation process of saccharomyces cerevisiae cell. I: A saccharomyces cerevisiae cell was encapsulated in a droplet; II: The saccharomyces cerevisiae cell began to bud and proliferate; III: The saccharomyces cerevisiae cell kept proliferating for 200 min. Scale bar: 30 μm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Design
2.2. Chip Fabrication
2.3. Chip Operation
3. Results and Discussion
3.1. Development of the CFSE Step Microstructure
3.2. Droplet Generation
3.3. Close-Packed Droplet Arrays
3.4. Three-Dimensional Cell Culture
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marx, V. A better brew. Nature 2013, 496, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, K.M.; Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007, 130, 601–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Yu, Y.; Hu, Y.; He, X.; Usta, O.B.; Yarmush, M.L. Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. Lab Chip 2017, 17, 1913–1932. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kilian, K.A. Bridging the gap: From 2D cell culture to 3D microengineered extracellular matrices. Adv. Healthc. Mater. 2015, 4, 2780–2796. [Google Scholar] [CrossRef] [Green Version]
- Duval, K.; Grover, H.; Han, L.-H.; Mou, Y.; Pegoraro, A.F.; Fredberg, J.; Chen, Z. Modeling physiological events in 2D vs. 3D cell culture. Physiology 2017, 32, 266–277. [Google Scholar] [CrossRef]
- Howes, A.L.; Richardson, R.D.; Finlay, D.; Vuori, K. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems. PLoS ONE 2014, 9, e108283. [Google Scholar] [CrossRef]
- Barrila, J.; Radtke, A.L.; Crabbé, A.; Sarker, S.F.; Herbst-Kralovetz, M.M.; Ott, C.M.; Nickerson, C.A. Organotypic 3D cell culture models: Using the rotating wall vessel to study host–pathogen interactions. Nat. Rev. Microbiol. 2010, 8, 791–801. [Google Scholar] [CrossRef]
- Souza, G.R.; Molina, J.R.; Raphael, R.M.; Ozawa, M.G.; Stark, D.J.; Levin, C.S.; Bronk, L.F.; Ananta, J.S.; Mandelin, J.; Georgescu, M.-M. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 2010, 5, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Utech, S.; Chen, D.; Prodanovic, R.; Lin, J.-M.; Weitz, D.A. Controlled assembly of heterotypic cells in a core–shell scaffold: Organ in a droplet. Lab Chip 2016, 16, 1346–1349. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jiang, Y.; Wang, K.; Wu, W. Passive Micropump for Highly Stable, Long-Termed, and Large Volume of Droplet Generation/Transport Inside 3D Microchannels Capable of Surfactant-Free and Droplet-Based Thermocycled Reverse Transcription-Polymerase Chain Reactions Based on a Single Thermostatic Heater. Anal. Chem. 2018, 90, 11925–11932. [Google Scholar]
- Shi, L.; Ding, H.; Zhong, X.; Yin, B.; Liu, Z.; Zhou, T. Mixing Mechanism of Microfluidic Mixer with Staggered Virtual Electrode Based on Light-Actuated AC Electroosmosis. Micromachines 2021, 12, 744. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.-P.; Ma, Y.; Lou, Q.; Zhu, H.; Yang, B.; Fang, Q. Three-dimensional cell culture and drug testing in a microfluidic sidewall-attached droplet array. Anal. Chem. 2017, 89, 10153–10157. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Kim, J.; Jeong, H.E.; Sudo, R.; Park, M.-J.; Chung, S. Fabrication of type I collagen microcarrier using a microfluidic 3D T-junction device and its application for the quantitative analysis of cell–ECM interactions. Biofabrication 2016, 8, 035014. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.G.; Kheiri, S.; Islam, S.; Kumar, H.; Yang, A.; Kim, K. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels. Lab Chip 2019, 19, 1621–1632. [Google Scholar] [CrossRef]
- Lee, D.; Cha, C. The combined effects of co-culture and substrate mechanics on 3D tumor spheroid formation within microgels prepared via flow-focusing microfluidic fabrication. Pharmaceutics 2018, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Yu, C.; Li, S.; Meng, J.; Li, T.; Pan, F.; Wang, Z.; Li, J. Microfabrication of On-Demand Tapered Glass Capillaries by Etching Combined With Polishing. J. Microelectromechanical Syst. 2022, 1–8. [Google Scholar] [CrossRef]
- Utada, A.; Chu, L.-Y.; Fernandez-Nieves, A.; Link, D.; Holtze, C.; Weitz, D. Dripping, jetting, drops, and wetting: The magic of microfluidics. Mrs Bull. 2007, 32, 702–708. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Ren, Y.; Liu, W.; Hou, L.; Tao, Y.; Hu, Q.; Jiang, H. Electrocoalescence of paired droplets encapsulated in double-emulsion drops. Lab Chip 2016, 16, 4313–4318. [Google Scholar] [CrossRef]
- Amstad, E.; Chemama, M.; Eggersdorfer, M.; Arriaga, L.R.; Brenner, M.P.; Weitz, D.A. Robust scalable high throughput production of monodisperse drops. Lab Chip 2016, 16, 4163–4172. [Google Scholar] [CrossRef]
- Haliburton, J.; Kim, S.; Clark, I.; Sperling, R.; Weitz, D.; Abate, A. Efficient extraction of oil from droplet microfluidic emulsions. Biomicrofluidics 2017, 11, 034111. [Google Scholar] [CrossRef]
- Postek, W.; Kaminski, T.S.; Garstecki, P. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample. Lab Chip 2017, 17, 1323–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Duan, C.; Jiang, S.; Zhu, C.; Ma, Y.; Fu, T. Microfluidic step emulsification techniques based on spontaneous transformation mechanism: A review. J. Ind. Eng. Chem. 2020, 92, 18–40. [Google Scholar] [CrossRef]
- Li, Z.; Leshansky, A.; Pismen, L.; Tabeling, P. Step-emulsification in a microfluidic device. Lab Chip 2015, 15, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Opalski, A.S.; Makuch, K.; Lai, Y.K.; Derzsi, L.; Garstecki, P. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions. Lab Chip 2019, 19, 1183–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mead-Hunter, R.; King, A.J.; Mullins, B.J. Plateau Rayleigh instability simulation. Langmuir 2012, 28, 6731–6735. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, L. Droplet pinch-off with pressure fluctuations. Chem. Eng. Sci. 2019, 196, 333–343. [Google Scholar] [CrossRef]
- Zhu, P.; Kong, T.; Zhou, C.; Lei, L.; Wang, L. Engineering Microstructure with Evaporation-Induced Self-Assembly of Microdroplets. Small Methods 2018, 2, 1800017. [Google Scholar] [CrossRef]
- Wei, C.; Yu, C.; Li, S.; Meng, J.; Li, T.; Cheng, J.; Pan, F.; Li, J. Easy-to-Operate Co-flow Step Emulsification Device for Droplet Digital Polymerase Chain Reaction. Anal. Chem. 2022, 94, 3939–3947. [Google Scholar] [CrossRef]
- Parapouli, M.; Vasileiadis, A.; Afendra, A.-S.; Hatziloukas, E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 2020, 6, 1. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Ostuni, E.; Takayama, S.; Jiang, X.; Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3, 335–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatch, A.C.; Fisher, J.S.; Pentoney, S.L.; Yang, D.L.; Lee, A.P. Tunable 3D droplet self-assembly for ultra-high-density digital micro-reactor arrays. Lab Chip 2011, 11, 2509–2517. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, C.; Yu, C.; Li, S.; Li, T.; Meng, J.; Li, J. Easy-to-Operate Co-Flow Step Emulsification Device for High-Throughput Three-Dimensional Cell Culture. Biosensors 2022, 12, 350. https://doi.org/10.3390/bios12050350
Wei C, Yu C, Li S, Li T, Meng J, Li J. Easy-to-Operate Co-Flow Step Emulsification Device for High-Throughput Three-Dimensional Cell Culture. Biosensors. 2022; 12(5):350. https://doi.org/10.3390/bios12050350
Chicago/Turabian StyleWei, Chunyang, Chengzhuang Yu, Shanshan Li, Tiejun Li, Jiyu Meng, and Junwei Li. 2022. "Easy-to-Operate Co-Flow Step Emulsification Device for High-Throughput Three-Dimensional Cell Culture" Biosensors 12, no. 5: 350. https://doi.org/10.3390/bios12050350
APA StyleWei, C., Yu, C., Li, S., Li, T., Meng, J., & Li, J. (2022). Easy-to-Operate Co-Flow Step Emulsification Device for High-Throughput Three-Dimensional Cell Culture. Biosensors, 12(5), 350. https://doi.org/10.3390/bios12050350