Bead Number Effect in a Magnetic-Beads-Based Digital Microfluidic Immunoassay
<p>Operating concept: (<b>a</b>) obtaining the specified magnetic bead number on a bead screening chip; (<b>b</b>) immunoassay process on the chip with a fixed number of magnetic beads; (<b>c</b>) beads’ aggregation for fluorescence intensity measurement at the detection area.</p> "> Figure 2
<p>Obtaining the specified bead number on the bead screening chip. (<b>a</b>) Move the bead droplet and magnet to fill the wells with beads: (<b>a1</b>) Drag the bead droplet towards the wells; (<b>a2</b>) Move the droplet and magnet backward and forward to fill the wells with beads. (<b>b</b>) Remove excessive beads with liquid by a pipet. (<b>c</b>) Every well was filled with exact one bead; (<b>d</b>) Use a magnet to attract the beads to the droplet top surface and then retrieve the droplet with all beads by a pipet.</p> "> Figure 3
<p>The digital microfluidic chip for immunoassay.</p> "> Figure 4
<p>Comparison of the calibration curves obtained by an unfixed number of magnetic beads (50–160) and three fixed numbers of magnetic beads (100, 49, and 25).</p> "> Figure 5
<p>Comparison of the CV values of an unfixed number of magnetic beads and three different fixed numbers of magnetic beads at different concentrations.</p> "> Figure 6
<p>Fluorescence intensity distribution and composite calibration curves for the unfixed number of magnetic beads and for the other three with fixed numbers of magnetic beads at the low concentrations of 0.0 pg/mL, 0.1 pg/mL, and 1.0 pg/mL. (<b>a</b>) The measured fluorescence intensity distribution overlaps when the number of magnetic beads is unfixed (50–160). When the fixed numbers of magnetic beads are (<b>b</b>) 100 beads, (<b>c</b>) 49 beads, or (<b>d</b>) 25 beads at concentrations of 0.0 pg/mL, 0.1 pg/mL, and 1.0 pg/mL, respectively, the fluorescence intensity distributions do not overlap. The LODs for (<b>a</b>) variable beads, (<b>b</b>) 100 beads, (<b>c</b>) 49 beads, and (<b>d</b>) 25 beads are 3.0 pg/mL, 0.0287 pg/mL, 0.0255 pg/mL, and 0.0508 pg/mL, respectively. n = 3.</p> "> Figure 7
<p>Microscopic images of successful aggregation at bead numbers of (<b>a</b>) 25, (<b>b</b>) 49, and (<b>c</b>) 100.</p> "> Figure 8
<p>Beads aggregation issue with too few or too many beads. (<b>a</b>) 25 magnetic beads: (<b>a1</b>) Some magnetic beads cannot be aggregated; (<b>a2</b>) The droplet with 25 magnetic beads, black shadow was the magnet; (<b>a3</b>) Some magnetic beads could not be aggregated. (<b>b</b>) More than 500 magnetic beads: (<b>b1</b>) Some magnetic beads were stuck and could not be moved; (<b>b2</b>) The droplet with more than 500 beads; (<b>b3</b>) Some successfully aggregated beads.</p> ">
Abstract
:1. Introduction
2. Methods and Materials
2.1. Bead Screening Chip
2.2. Magnetic-Beads-Based Digital Microfluidic Immunoassay
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volpetti, F.; Garcia-Cordero, J.L.; Maerkl, S.J. A Microfluidic Platform for High-Throughput Multiplexed Protein Quantitation. PLoS ONE 2015, 10, e0117744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.Y.; Chang, C.L.; Wang, Y.N.; Fu, L.M. Microfluidic mixing: A review. Int. J. Mol. Sci. 2011, 12, 3263–3287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bavil, A.K.; Sticker, D.; Rothbauer, M.; Ertl, P.; Kim, J. A microfluidic microparticle-labeled impedance sensor array for enhancing immunoassay sensitivity. Analyst 2021, 146, 3289–3298. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Qie, Y.; Qin, W.; Zhao, K.; Zhu, J.; Zhao, L.; Li, M.; Guo, L.-H. Emerging Immunoassay Technologies for the Rapid Detection of Exosomes. Sens. Actuators B Chem. 2021, 345, 130336. [Google Scholar] [CrossRef]
- Krausz, A.D.; Frederick, K.K.; Mark, A.B. A variable height microfluidic device for multiplexed immunoassay analysis of traumatic brain injury biomarkers. Biosensors 2021, 11, 320. [Google Scholar] [CrossRef]
- Chen, X.; Ning, Y.; Pan, S.; Liu, B.; Chang, Y.; Pang, W.; Duan, X. Mixing during Trapping Enabled a Continuous-Flow Microfluidic Smartphone Immunoassay Using Acoustic Streaming. ACS Sens. 2021, 6, 2386–2394. [Google Scholar] [CrossRef]
- Huang, E.; Huang, D.; Wang, Y.; Cai, D.; Luo, Y.; Zhong, Z.; Liu, D. Active droplet-array microfluidics-based chemiluminescence immunoassay for point-of-care detection of procalcitonin. Biosens. Bioelectron. 2021, 195, 113684. [Google Scholar] [CrossRef]
- Ghodbane, M.; Stucky, E.C.; Maguire, T.J.; Schloss, R.S.; Shreiber, D.I.; Zahn, J.D.; Yarmush, M.L. Development and validation of a microfluidic immunoassay capable of multiplexing parallel samples in microliter volumes. Lab Chip 2015, 15, 3211–3221. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.I.; Wichers, J.H.; van Amerongen AReis, N.M. Towards one-step quantitation of prostate-specific antigen (PSA) in microfluidic devices: Feasibility of optical detection with nanoparticle labels. Bionanoscience 2017, 7, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, B.; Karpíšek, M.; Baumgartner, D.; Klein, V.; Bostanci, N.; Paust, N.; Früh, S.M.; Zengerle, R.; Mitsakakis, K. One-step, wash-free, bead-based immunoassay employing bound-free phase detection. Anal. Chim. Acta 2021, 1153, 338280. [Google Scholar] [CrossRef]
- Fabiani, L.; Mazzaracchio, V.; Moscone, D.; Fillo, S.; De Santis, R.; Monte, A.; Amatore, D.; Lista, F.; Arduini, F. Based immunoassay based on 96-well wax-printed paper plate combined with magnetic beads and colorimetric smartphone-assisted measure for reliable detection of SARS-CoV-2 in saliva. Biosens. Bioelectron. 2022, 200, 113909. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Huang, Q.; Zhang, Y.; Zhang, H.; Xu, H.; Li, X.; Ma, X. Magnetic beads-based multicolor colorimetric immunoassay for ultrasensitive detection of aflatoxin B1. Chin. Chem. Lett. 2020, 32, 1462–1465. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Liu, Z.; Fu, X.; Du, D. Establishment of a Chemiluminescence Immunoassay Combined with Immunomagnetic Beads for Rapid Analysis of Ochratoxin A. J. AOAC Int. 2021, 105, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kim, H.; Bae, P.K.; Lee, S.; Yang, S.; Kim, J. A single snapshot multiplex immunoassay platform utilizing dense test lines based on engineered beads. Biosens. Bioelectron. 2021, 190, 113388. [Google Scholar] [CrossRef]
- Huergo, L.F.; Selim, K.A.; Conzentino, M.S.; Gerhardt, E.C.M.; Santos, A.R.S.; Wagner, B.; Alford, J.T.; Deobald, N.; Pedrosa, F.O.; De Souza, E.M.; et al. Magnetic bead-based immunoassay allows rapid, inexpensive, and quantitative detection of human SARS-CoV-2 antibodies. ACS Sens. 2021, 6, 703–708. [Google Scholar] [CrossRef]
- Karle, M.; Vashist, S.K.; Zengerle, R.; von Stetten, F. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review. Anal. Chim. Acta 2016, 929, 1–22. [Google Scholar] [CrossRef]
- Lehmann, U.; Hadjidj, S.; Parashar, V.; Vandevyver, C.; Rida, A.; Gijs, M. Two-dimensional magnetic manipulation of microdroplets on a chip as a platform for bioanalytical applications. Sens. Actuators B Chem. 2006, 117, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Sista, R.S.; Eckhardt, A.E.; Srinivasan, V.; Pollack, M.G.; Palanki, S.; Pamula, V.K. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 2008, 8, 2188–2196. [Google Scholar] [CrossRef] [Green Version]
- Mou, L.; Jiang, X. Materials for Microfluidic Immunoassays: A Review. Adv. Healthc. Mater. 2017, 6, 1601403. [Google Scholar] [CrossRef] [Green Version]
- Tighe, P.; Ryder, R.R.; Todd, I.; Fairclough, L.C. ELISA in the multiplex era: Potentials and pitfalls. Proteom. Clin. Appl. 2015, 9, 406–422. [Google Scholar] [CrossRef]
- Vashist, S.K.; Luong, J.H. Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Cheng, H.; Liu, H.; Li, W.; Li, M. Recent advances in magnetic digital microfluidic platforms. Electrophoresis 2021, 42, 2329–2346. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Nagl, S. Automated Miniaturized Digital Microfluidic Antimicrobial Susceptibility Test Using a Chip-Integrated Optical Oxygen Sensor. ACS Sens. 2021, 6, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Liu, Y.; Chen, R.; Li, Y.; Zhang, C.; Jiang, Y.; Lu, Y.; Lin, B.; Chen, P.; Tian, R.; et al. A robust and scalable active-matrix driven digital microfluidic platform based on printed-circuit board technology. Lab Chip 2021, 21, 1886–1896. [Google Scholar] [CrossRef] [PubMed]
- Sklavounos, A.A.; Lamanna, J.; Modi, D.; Gupta, S.; Mariakakis, A.; Callum, J.; Wheeler, A.R. Digital Microfluidic Hemagglutination Assays for Blood Typing, Donor Compatibility Testing, and Hematocrit Analysis. Clin. Chem. 2021, 67, 1699–1708. [Google Scholar] [CrossRef]
- Cho, S.K.; Moon, H.; Kim, C.-J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 2003, 12, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Park, J.K.; Lee, S.J.; Kang, K.H. Fast and reliable droplet transport on single-plate electrowetting on dielectrics using nonfloating switching method. Biomicrofluidics 2010, 4, 024102. [Google Scholar] [CrossRef] [Green Version]
- Coudron, L.; McDonnell, M.B.; Munro, I.; McCluskey, D.K.; Johnston, I.D.; Tan, C.K.; Tracey, M.C. Fully integrated digital microfluidics platform for automated immunoassay; A versatile tool for rapid, specific detection of a wide range of pathogens. Biosens. Bioelectron. 2019, 128, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Zhang, Z.; Ju, Y.S. EWOD (electrowetting on dielectric) digital microfluidics powered by finger actuation. Lab Chip 2014, 14, 1117–1122. [Google Scholar] [CrossRef] [Green Version]
- Lv, P.; Zhang, Y.; Han, D.; Sun, H. Directional Droplet Transport on Functional Surfaces with Superwettabilities. Adv. Mater. Interfaces 2021, 8, 2100043. [Google Scholar] [CrossRef]
- Satoshi, K.; Ohya, C.; Yamada, T. Selective control of the contact and transport between droplet pairs by electrowetting-on-dielectric for droplet-array sandwiching technology. Sci. Rep. 2021, 11, 12355. [Google Scholar]
- Yamamoto, K.; Takagi, S.; Ichikawa, Y.; Motosuke, M. Electrowetting-on-liquid-dielectric (EWOLD) enables droplet manipulation with a few volts. arXiv 2022, arXiv:2201.09496. [Google Scholar]
- Huang, C.Y.; Shih, P.H.; Tsai, P.Y.; Lee, I.C.; Hsu, H.Y.; Huang, H.Y.; Fan, S.-K.; Hsu, W. AMPFLUID: Aggregation magnified post-assay fluorescence for ultrasensitive immunodetection on digital microfluidics. Proc. IEEE 2015, 103, 225–235. [Google Scholar] [CrossRef]
- Huang, C.Y.; Tsai, P.Y.; Lee, I.C.; Hsu, H.Y.; Huang, H.Y.; Fan, S.K.; Yao, D.-J.; Liu, C.-H.; Hsu, W. A highly efficient bead extraction technique with low bead number for digital microfluidic immunoassay. Biomicrofluidics 2016, 10, 011901. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Hsu, W.; Huang, H.Y.; Tseng, H.Y.; Lee, C.T.; Hsu, C.Y.; Shieh, Y.-C.; Wang, S.-H.; Yao, D.-J.; Liu, C.-H. Simultaneous detection of two growth factors from human single-embryo culture medium by a bead-based digital microfluidic chip. Biosens. Bioelectron. 2020, 150, 111851. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, J.; Zou, Y.; Gong, M.; Chen, H.; Hong, G.; Antaris, A.L.; Li, X.; Liu, C.-L.; Chen, C.; et al. Plasmonic micro-beads for fluorescence enhanced, multiplexed protein detection with flow cytometry. Chem. Sci. 2014, 5, 4070–4075. [Google Scholar] [CrossRef]
- Hsu, H.-Y.; Wittemann, S.; Joos, T.O. Miniaturized Parallelized Sandwich Immunoassays. Clin. Proteom. 2008, 428, 247–261. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, W.; Shih, Y.-T.; Lee, M.-S.; Huang, H.-Y.; Wu, W.-N. Bead Number Effect in a Magnetic-Beads-Based Digital Microfluidic Immunoassay. Biosensors 2022, 12, 340. https://doi.org/10.3390/bios12050340
Hsu W, Shih Y-T, Lee M-S, Huang H-Y, Wu W-N. Bead Number Effect in a Magnetic-Beads-Based Digital Microfluidic Immunoassay. Biosensors. 2022; 12(5):340. https://doi.org/10.3390/bios12050340
Chicago/Turabian StyleHsu, Wensyang, Yu-Teng Shih, Meng-Shiue Lee, Hong-Yuan Huang, and Wan-Ning Wu. 2022. "Bead Number Effect in a Magnetic-Beads-Based Digital Microfluidic Immunoassay" Biosensors 12, no. 5: 340. https://doi.org/10.3390/bios12050340
APA StyleHsu, W., Shih, Y.-T., Lee, M.-S., Huang, H.-Y., & Wu, W.-N. (2022). Bead Number Effect in a Magnetic-Beads-Based Digital Microfluidic Immunoassay. Biosensors, 12(5), 340. https://doi.org/10.3390/bios12050340