A Biomimetic Pose Estimation and Target Perception Strategy for Transmission Line Maintenance UAVs
<p>Structural diagram of vestibular organs in vertebrates.</p> "> Figure 2
<p>Comparison of environmental perception mechanism in an owl and a UAV: (<b>a</b>) owl pose estimation and environmental perception module; (<b>b</b>) the pose estimation and environmental perception system in a quad-rotor UAV.</p> "> Figure 3
<p>ORB feature homogenization strategy based on quadtree structure.</p> "> Figure 4
<p>Visual feature projection matching.</p> "> Figure 5
<p>Dictionary structure diagram, based on point and line features.</p> "> Figure 6
<p>Illustration of map merging process.</p> "> Figure 7
<p>Overall architecture of the object detector.</p> "> Figure 8
<p>The structure of a D435i camera.</p> "> Figure 9
<p>The flowchart of target measurement system.</p> "> Figure 10
<p>Diagram of the owl-inspired target tracking system.</p> "> Figure 11
<p>A comparison between the feature extraction performance of the VINS-Fusion, PL-VIO, and our proposed algorithm: (<b>a</b>) VINS-Fusion; (<b>b</b>) PL-VIO; (<b>c</b>) proposed algorithm. The dots and lines in the figure respectively represent the extracted point features and line features.</p> "> Figure 12
<p>A comparison between the mapping effects of different mapping methods: (<b>a</b>) raw image; (<b>b</b>) VINS-Fusion; (<b>c</b>) PL-VIO; (<b>d</b>) proposed method.</p> "> Figure 12 Cont.
<p>A comparison between the mapping effects of different mapping methods: (<b>a</b>) raw image; (<b>b</b>) VINS-Fusion; (<b>c</b>) PL-VIO; (<b>d</b>) proposed method.</p> "> Figure 13
<p>Performance-related demonstration of the target ranging system for an outdoor on-site operation.</p> "> Figure 14
<p>Logic diagram for the UAV autonomous attachment experiment.</p> "> Figure 15
<p>Autonomous attachment in Gazebo simulation environment.</p> "> Figure 16
<p>The GUI of power line foreign object detection system.</p> ">
Abstract
:1. Introduction
- Inspired by an owl’s binoculus and vestibular organs, a novel UAV pose estimation method is designed, based on the multi-modal comprehensive pose perception mechanism in owls, using a binocular camera and the inertial measurement unit (IMU) to simulate an owl’s retina and vestibular organs, respectively, enabling the UAV to acquire autonomous navigation capabilities similar to animals;
- Inspired by an owl’s visual attention mechanism, a lightweight bionic neural network, OVNet (owl vision net), is proposed based on the visual nervous system in owls. A visual depth estimation algorithm, based on the binocular stereo principle, is matched with OVNet to form a complete target detection and relative position estimation system for UAVs;
- The proposed pose estimation and target perception system is parallelized and accelerated using CUDA, enabling it to run in real-time on the embedded hardware platform in a real-world UAV.
2. Owl-Inspired Pose Estimation System
2.1. Visual Feature Extraction and Optimization
2.1.1. Uniform ORB Feature Points
- Determine the initial number of nodes based on the aspect ratio of the input image, serving as the root node of the quadtree;
- After the first quadrisection of the root node, it becomes four child nodes. The areas of the child nodes are divided according to the dimensions of the input image, thus determining the boundary coordinates;
- For each node area, count the number of ORB corners. If a node area contains no ORB corners, eliminate that node. If a node contains only one ORB corner, halt its division;
- If the total number of nodes has not reached the preset feature point threshold n, prioritize the division of nodes containing more feature points. If the number of nodes exceeds the threshold, select the ORB corner with the highest response value within that area as the optimal feature point for that node, while deleting other feature points in the node area.
2.1.2. Line Feature Optimization
2.1.3. Stereo Matching
2.2. IMU Pre-Integration
2.3. Backend Optimization
2.3.1. Point–Line Fusion Bag-of-Words Model
2.3.2. Loop and Map Merging
3. Owl-Inspired Target Perception System
3.1. Designing Efficient CNNs for Real-Time Object Detection
3.2. Binocular Ranging Platform
3.3. Owl-Inspired Target Tracking System
4. Experiments
4.1. Performance Evaluation of Pose Estimation Algorithm
4.2. Evaluation of Target Perception Algorithm
4.3. UAV Autonomous Attachment Test
4.4. Power Line Foreign Object Detection in the Real World
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Liu, C.; Coombes, M.; Yan, Y.; Chen, W.H. Optimal path following for small fixed-wing UAVs under wind disturbances. IEEE Trans. Control Syst. Technol. 2020, 29, 996–1008. [Google Scholar] [CrossRef]
- Gupta, A.; Fernando, X. Simultaneous Localization and Mapping (SLAM) and Data Fusion in Unmanned Aerial Vehicles: Recent Advances and Challenges. Drones 2022, 6, 85. [Google Scholar] [CrossRef]
- Zhou, X.; Wen, X.; Wang, Z.; Gao, Y.; Li, H.; Wang, Q.; Yang, T.; Lu, H.; Cao, Y.; Xu, C.; et al. Swarm of micro flying robots in the wild. Sci. Robot. 2022, 7, eabm5954. [Google Scholar] [CrossRef] [PubMed]
- Chodnicki, M.; Siemiatkowska, B.; Stecz, W.; Stępień, S. Energy Efficient UAV Flight Control Method in an Environment with Obstacles and Gusts of Wind. Energies 2022, 15, 3730. [Google Scholar] [CrossRef]
- Tabib, W.; Goel, K.; Yao, J.; Boirum, C.; Michael, N. Autonomous Cave Surveying with an Aerial Robot. IEEE Trans. Robot. 2021, 9, 1016–1032. [Google Scholar] [CrossRef]
- Zhou, B.; Pan, J.; Gao, F.; Shen, S. RAPTOR: Robust and Perception-Aware Trajectory Replanning for Quadrotor Fast Flight. IEEE Trans. Robot. 2021, 37, 1992–2009. [Google Scholar] [CrossRef]
- Mouritsen, H. Long-distance navigation and magnetoreception in migratory animals. Nature 2018, 558, 50–59. [Google Scholar] [CrossRef]
- Sulser, R.B.; Patterson, B.D.; Urban, D.J.; Neander, A.I.; Luo, Z.X. Evolution of inner ear neuroanatomy of bats and implications for echolocation. Nature 2022, 602, 449–454. [Google Scholar] [CrossRef]
- Essner, R.L., Jr.; Pereira, R.E.; Blackburn, D.C.; Singh, A.L.; Stanley, E.L.; Moura, M.O.; Confetti, A.E.; Pie, M.R. Semicircular canal size constrains vestibular function in miniaturized frogs. Sci. Adv. 2022, 8, eabn1104. [Google Scholar] [CrossRef]
- Kim, M.; Chang, S.; Kim, M.; Yeo, J.E.; Kim, M.S.; Lee, G.J.; Kim, D.H.; Song, Y.M. Cuttlefish eye-inspired artificial vision for high-quality imaging under uneven illumination conditions. Sci. Robot. 2023, 8, eade4698. [Google Scholar] [CrossRef]
- Prescott, T.J.; Wilson, S.P. Understanding brain functional architecture through robotics. Sci. Robot. 2023, 8, eadg6014. [Google Scholar] [CrossRef] [PubMed]
- Michael, M.; Nachum, U. Representation of Three-Dimensional Space in the Hippocampus of Flying Bats. Science 2013, 340, 367–372. [Google Scholar] [CrossRef]
- Finkelstein, A.; Derdikman, D.; Rubin, A.; Foerster, J.N.; Las, L.; Ulanovsky, N. Three-dimensional head-direction coding in the bat brain. Nature 2015, 517, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Wu, Y.; Ma, S.; Xu, M.; Li, H.; Qu, H.; Song, C.; Wang, T.; Zhao, R.; Shi, L. Brain-inspired multimodal hybrid neural network for robot place recognition. Sci. Robot. 2023, 8, eabm6996. [Google Scholar] [CrossRef]
- Li, H.H.; Pan, J.; Carrasco, M. Different computations underlie overt presaccadic and covert spatial attention. Nat. Hum. Behav. 2021, 5, 1418–1431. [Google Scholar] [CrossRef]
- Madore, K.P.; Khazenzon, A.M.; Backes, C.W.; Jiang, J.; Uncapher, M.R.; Norcia, A.M.; Wagner, A.D. Memory failure predicted by attention lapsing and media multitasking. Nature 2020, 587, 87–91. [Google Scholar] [CrossRef]
- Liu, B.; Nobre, A.C.; van Ede, F. Functional but not obligatory link between microsaccades and neural modulation by covert spatial attention. Nat. Commun. 2022, 13, 3503. [Google Scholar] [CrossRef]
- Nieuwenhuis, S.; Yeung, N. Neural mechanisms of attention and control: Losing our inhibitions? Nat. Neurosci. 2005, 8, 1631–1633. [Google Scholar] [CrossRef]
- Debes, S.R.; Dragoi, V. Suppressing feedback signals to visual cortex abolishes attentional modulation. Science 2023, 379, 468–473. [Google Scholar] [CrossRef]
- Chen, G.Z.; Gong, P. A spatiotemporal mechanism of visual attention: Superdiffusive motion and theta oscillations of neural population activity patterns. Sci. Adv. 2022, 8, eabl4995. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Van, G.L. Surf: Speeded up robust features. In Computer Vision—ECCV 2006, Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417. [Google Scholar]
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. Brief: Binary robust independent elementary features. In Computer Vision—ECCV 2010, Proceedings of the 11th European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 778–792. [Google Scholar]
- Yang, X.; Cheng, K.T. LDB: An ultra-fast feature for scalable augmented reality on mobile devices. In Proceedings of the 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Atlanta, GA, USA, 5–8 November 2012; pp. 49–57. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Mair, E.; Hager, G.D.; Burschka, D.; Suppa, M.; Hirzinger, G. Adaptive and generic corner detection based on the accelerated segment test. In Proceedings of the European Conference on Computer Vision, Crete, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 183–196. [Google Scholar]
- Bartoli, A.; Peter, S. The 3D line motion matrix and alignment of line reconstructions. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1. [Google Scholar]
- Liang, Y.D.; Barsky, B.A. A new concept and method for line clipping. ACM Trans. Graph. (TOG) 1984, 3, 1–22. [Google Scholar] [CrossRef]
- Lupton, T.; Salah, S. Visual-inertial-aided navigation for high-dynamic motion in built environments without initial conditions. IEEE Trans. Robot. 2011, 28, 61–76. [Google Scholar] [CrossRef]
- Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-manifold preintegration for real-time visual--inertial odometry. IEEE Trans. Robot. 2016, 33, 1–21. [Google Scholar] [CrossRef]
- Gálvez-López, D.; Tardos, J.D. Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 2012, 28, 1188–1197. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Bochkovskiy, A.; Wang, C.; Liao, H.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Sun, P.; Zhang, R.; Jiang, Y.; Kong, T. Sparse R-CNN: End-to-End Object Detection with Learnable Proposals. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 14454–14463. [Google Scholar]
- Sun, Z.; Cao, S.; Yang, Y.; Kitani, K. Rethinking Transformer-based Set Prediction for Object Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Nashville, TN, USA, 20–25 June 2021; pp. 3611–3620. [Google Scholar]
- Zhang, C.; Yang, Z.; Liao, L.; You, Y.; Sui, Y.; Zhu, T. RPEOD: A Real-Time Pose Estimation and Object Detection System for Aerial Robot Target Tracking. Machines 2022, 10, 181. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Fang, Q.; Xu, C.; Xu, H.; Xu, X.; Zhang, J. FRL-SLAM: A Fast, Robust and Lightweight SLAM System for Quadruped Robot Navigation. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 27–31 December 2021; pp. 1165–1170. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Xu, H.; Liao, L.; Zhu, T.; Li, G.; Yang, X.; Zhang, Q. RRVPE: A Robust and Real-Time Visual-Inertial-GNSS Pose Estimator for Aerial Robot Navigation. Wuhan Univ. J. Nat. Sci. 2023, 28, 20–28. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Zhuo, H.; Liao, L.; Yang, X.; Zhu, T.; Li, G. A Lightweight and Drift-Free Fusion Strategy for Drone Autonomous and Safe Navigation. Drones 2023, 7, 34. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Z.; Zhuo, H.; Xu, C.; Zhang, C.; He, N.; Liao, L.; Wang, Z. A Supervised Reinforcement Learning Algorithm for Controlling Drone Hovering. Drones 2024, 8, 69. [Google Scholar] [CrossRef]
- Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J. The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. [Google Scholar] [CrossRef]
- Qin, T.; Cao, S.; Pan, J.; Shen, S. A General Optimization-based Framework for Global Pose Estimation with Multiple Sensors. arXiv 2019, arXiv:1901.03642. [Google Scholar]
- He, Y.; Zhao, J.; Guo, Y.; He, W.; Yuan, K. PL-VIO: Tightly-coupled monocular visual-inertial odometry using point and line features. Sensors 2018, 18, 1159. [Google Scholar] [CrossRef] [PubMed]
Strategies | Advantages | Limitations |
---|---|---|
Performed by humans | High reliability | Inefficiency and high cost |
Performed by robots | High efficiency | Reliant on skilled operators |
Proposed | Autonomous and unmanned | Low reliability |
Sequence | PL-SLAM | VINS-Fusion | PL-VIO | Proposed |
---|---|---|---|---|
MH_01 | 0.168 | 0.163 | 0.158 | 0.058 |
MH_02 | 0.088 | 0.115 | 0.140 | 0.034 |
MH_03 | 0.100 | 0.193 | 0.269 | 0.138 |
MH_04 | 0.222 | 0.225 | 0.362 | 0.064 |
MH_05 | 0.245 | 0.204 | 0.271 | 0.084 |
V1_01 | 0.055 | 0.115 | 0.075 | 0.029 |
V1_02 | 0.109 | 0.087 | - | 0.060 |
V1_03 | 0.169 | 0.097 | 0.195 | 0.048 |
V2_01 | 0.073 | 0.086 | 0.093 | 0.073 |
V2_02 | 0.100 | 0.138 | 0.155 | 0.057 |
V2_03 | 0.198 | 0.216 | 0.312 | 0.069 |
Target Detector | mAP50/(%) | FPS (Titan) | Parameters |
---|---|---|---|
SSD | 89.54 | 87.2 | 24.15 M |
Faster R-CNN | 90.25 | 13.9 | 136.77 M |
YOLOv4 | 95.70 | 46.7 | 63.95 M |
YOLOv5 | 95.30 | 58.8 | 21.05 M |
YOLOX | 93.70 | 77.1 | 8.94 M |
PP-YOLOEs | 96.1 | 124.7 | 7.93 M |
OVNet | 95.50 | 162.4 | 1.69 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, H.; Yang, Z.; Zhang, C.; Xu, N.; Xue, B.; Zhu, Z.; Xie, Y. A Biomimetic Pose Estimation and Target Perception Strategy for Transmission Line Maintenance UAVs. Biomimetics 2024, 9, 745. https://doi.org/10.3390/biomimetics9120745
Zhuo H, Yang Z, Zhang C, Xu N, Xue B, Zhu Z, Xie Y. A Biomimetic Pose Estimation and Target Perception Strategy for Transmission Line Maintenance UAVs. Biomimetics. 2024; 9(12):745. https://doi.org/10.3390/biomimetics9120745
Chicago/Turabian StyleZhuo, Haoze, Zhong Yang, Chi Zhang, Nuo Xu, Bayang Xue, Zekun Zhu, and Yucheng Xie. 2024. "A Biomimetic Pose Estimation and Target Perception Strategy for Transmission Line Maintenance UAVs" Biomimetics 9, no. 12: 745. https://doi.org/10.3390/biomimetics9120745
APA StyleZhuo, H., Yang, Z., Zhang, C., Xu, N., Xue, B., Zhu, Z., & Xie, Y. (2024). A Biomimetic Pose Estimation and Target Perception Strategy for Transmission Line Maintenance UAVs. Biomimetics, 9(12), 745. https://doi.org/10.3390/biomimetics9120745