Metaheuristic Algorithm and Laser Projection for Adjusting the Model of the Last Lower Surface to a Footprint
<p>Surface points to construct a 5th-order Bezier surface model.</p> "> Figure 2
<p>(<b>a</b>) Surface points to construct a Bezier surface. (<b>b</b>) Flowchart to perform metaheuristic algorithm for optimization of the control points of the Bezier surface model. (<b>c</b>) Bezier surface generated via control points optimized via metaheuristic algorithm.</p> "> Figure 3
<p>(<b>a</b>) Vision system to retrieve the last lower surface via laser line projection. (<b>b</b>) Vision system geometry to determine surface topography via laser line scanning.</p> "> Figure 4
<p>Graphical summary of the methodology to perform the adjusted last lower surface.</p> "> Figure 5
<p>(<b>a</b>) Last lower surface to perform the adjusted Bezier surface model. (<b>b</b>) Surface generated by the initial Bezier surface model to perform the adjusted last lower surface. (<b>c</b>) Footprint topography recovered via laser line scanning.</p> "> Figure 6
<p>(<b>a</b>) Initial last lower surface overlapped on the footprint topography. (<b>b</b>) Adjustment of the last lower-surface model to the footprint topography.</p> "> Figure 7
<p>Evolution of the accuracy of the metaheuristic algorithm according to the number of iterations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bezier Surface Modeling via Metaheuristic Algorithm
2.2. Three-Dimensional Surface Recovering via Laser Line Scanning
3. Last Lower-Surface Adjustment via Metaheuristic Algorithm
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wlodarczyk-Sielicka, M.; Lubczonek, J. The use of an artificial neural network to process hydrographic big data during surface modeling. Computers 2019, 8, 26. [Google Scholar] [CrossRef]
- Wrześniowska, K. Shoe last customization: A systematic review. Int. J. Eng. Technol. Innov. 2023, 13, 230–250. [Google Scholar] [CrossRef]
- Wang, L.; Jones, D.; Chapman, G.J.; Siddle, H.J.; Russell, D.A.; Alazmani, A.; Culmer, P. Design of a digital triaxial force sensor for plantar load measurements. IEEE Sens. 2019, 2019, 1–4. [Google Scholar]
- Cong, Y.; Lee, W.; Zhang, M. Regional plantar foot pressure distributions on high-heeled shoes-shank curve effects. Acta Mech. Sin. 2011, 27, 1091–1097. [Google Scholar] [CrossRef]
- Marconi, M.; Manieri, S.; Germani, M.; Raffaeli, R. A Digitally-enabled integrated approach to design and manufacture shoe lasts. Comput.-Aided Des. Appl. 2019, 16, 593–610. [Google Scholar] [CrossRef]
- Wang, C.C.; Yang, C.H.; Wang, C.S.; Xu, D.; Huang, B.S. Artificial neural networks in the selection of shoe lasts for people with mild diabetes. Med. Eng. Phys. 2019, 64, 37–45. [Google Scholar] [CrossRef]
- Zhang, G.; Zhong, M.; Shi, Y.; Wang, W.; Wang, Y.; Wang, X. Parametric pattern marking of shoe last bottom based on AutoCAD for mass customization. Am. J. Softw. Eng. Appl. 2022, 11, 12–21. [Google Scholar]
- Anggoro, P.W.; Bawono, B.; Jamari, J.; Tauviqirrahman, M.; Bayuseno, A.P. Advanced design and manufacturing of custom orthotics insoles based on hybrid Taguchi-response surface method. Heliyon 2021, 7, e06481. [Google Scholar] [CrossRef]
- Tao, H.; Tianshe, S.; Kai, S. Accuracy and comfort analysis of digital shoe design. Int. J. Multimed. Ubiquitous Eng. 2018, 13, 13–20. [Google Scholar]
- Song, Y.; Hoeksema, J.; Ramkumar, A.; Molenbroek, J.F.M. A landmark-based 3D parametric foot model for footwear customization. Int. J. Digit. Hum. 2018, 2, 115–128. [Google Scholar] [CrossRef]
- Luximon, A.; Jiang, L.; Luximon, Y. Sizing and grading methods with consideration of footwear styles. Int. J. Ind. Ergon. 2020, 78, 102960. [Google Scholar] [CrossRef]
- Abhishektha, B.; Anderson, A.P. Dynamic foot morphology explained through 4D scanning and shape modeling. J. Biomech. 2021, 122, 110465. [Google Scholar]
- Serrato-Pedrosa, J.A.; Urriolagoitia-Sosa, G.; Romero-Ángeles, B.; Urriolagoitia-Calderón, G.M.; Cruz-López, S.; Urriolagoitia-Luna, A.; Carbajal-López, D.E.; Guereca-Ibarra, J.R.; Murillo-Aleman, G. Biomechanical evaluation of plantar pressure distribution towards a customized 3D orthotic device: A methodological case study through a finite element analysis approach. Appl. Sci. 2024, 14, 1650. [Google Scholar] [CrossRef]
- Luximon, A.; Goonetilleke, R.S.; Tsui, K.L. Foot landmarking for footwear customization. Ergonomics 2003, 46, 364–383. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Kong, L.; Kong, D.; Yuan, L.; Kong, D. An improved method for NURBS surface based on Particle swarm optimization BP neural network. IEEE Access 2020, 8, 184656–184663. [Google Scholar] [CrossRef]
- Saini, D.; Kumar, S.; Singh, M.K.; Ali, M. Two view NURBS reconstruction based on GACO model. Complex Intell. Syst. 2021, 7, 2329–2346. [Google Scholar] [CrossRef]
- Shah, G.A.; Polette, A.; Pernot, J.P.; Giannini, F.; Monti, M. Simulated annealing-based fitting of CAD models to point clouds of mechanical parts’ assemblies. Eng. Comput. 2020, 37, 2891–2909. [Google Scholar] [CrossRef]
- Pathak, V.K.; Nayak, C.; Singh, R.; Dikshit, M.K.; Sai, T. Optimizing parameters in surface reconstruction of transtibial prosthetic socket using central composite design coupled with fuzzy logic-based model. Neural Comput. Appl. 2020, 32, 15597–15613. [Google Scholar] [CrossRef]
- Bondar, O.; Chertenko, L.; Spahiu, T.; Shehi, E. Shoe customization in a mass-production mode. J. Eng. Fibers Fabr. 2024, 19, 15589250241239247. [Google Scholar] [CrossRef]
- Di Roma, A. Footwear Design. The paradox of tailored shoe in the contemporary digital manufacturing systems. Des. J. 2017, 20, S2689–S2699. [Google Scholar] [CrossRef]
- Xie, J.; Zhou, Z.; Luo, T.; Pang, H.; Meng, X.; Zhou, F. Study on design and additive manufacturing of customized bionic sports sole for the elderly. IEEE Access 2021, 9, 69830–69838. [Google Scholar] [CrossRef]
- Somitca, I.A.; Brad, S.; Florian, V.; Deaconu, S.E. Improving path accuracy of mobile robots in uncertain environments by adapted Bezier curves. Electronics 2022, 11, 3568. [Google Scholar] [CrossRef]
- Tong, Z.; Yang, J.; Liu, Y.; Zhang, Z.; Liu, S.; Lu, Y.; Pang, B.; An, R. Cooling and optimizing urban heat island based on a thermal knowledge-informed multi-type ant colony model. Remote Sens. Environ. 2024, 306, 114138. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, T.; He, C.; Liao, H.; Li, Y. Experimental and numerical optimization of variable stiffness tensile coupons with a hole for maximum stiffness. Compos. Struct. 2024, 327, 117643. [Google Scholar] [CrossRef]
- Díaz-Cortés, M.A.; Cuevas, E.; Gálvez, J.; Camarena, O. A new metaheuristic optimization methodology based on fuzzy logic. Appl. Soft Comput. 2017, 61, 549–569. [Google Scholar] [CrossRef]
- Yang, F.; Yu, T.; Bui, T.Q. Morphogenesis of free-form surfaces by an effective approach based on isogeometric analysis and particle swarm optimization. Structures 2023, 47, 2347–2353. [Google Scholar] [CrossRef]
- Cai, Z.; Chen, T.; Zeng, C.; Guo, X.; Lian, H.; Zheng, Y.; Wei, X. A global approach to the optimal trajectory based on an improved ant colony algorithm for cold spray. J. Therm. Spray Technol. 2016, 25, 1631–1637. [Google Scholar] [CrossRef]
- Ueda, E.K.; Sato, A.K.; Martins, T.C.; Takimoto, R.Y.; Russo, R.S.U., Jr.; Tsuzuki, M.S.G. Curve approximation by adaptive neighborhood simulated annealing and piecewise Bézier curves. Soft Comput. 2020, 24, 18821–18839. [Google Scholar] [CrossRef]
- Bidin, M.S.; Wahab, A.F.; Zulkifly, M.I.E.; Zakaria, R. Generalized fuzzy linguistic bicubic B-spline surface model for uncertain fuzzy linguistic data. Symmetry 2022, 14, 2267. [Google Scholar] [CrossRef]
- Tan, K.C.; Chiam, S.C.; Mamun, A.A.; Goh, C.K. Balancing exploration and exploitation with adaptive variation for evolutionary multi–objective optimization. Eur. J. Oper. Res. 2009, 197, 701–713. [Google Scholar] [CrossRef]
- Muñoz-Rodríguez, J.A.; Rodríguez-Vera, R. Evaluation of the light line displacement location for object shape detection. J. Mod. Opt. 2003, 50, 137–154. [Google Scholar] [CrossRef]
- Mishra, M.K.; Abtew, M.A.; Bruniaux, P. Customization of shoe last based on 3D design process with adjustable 3D ease allowance for better comfort and design. Int. J. Adv. Manuf. Technol. 2022, 123, 3131–3146. [Google Scholar] [CrossRef]
- Chertenko, L.; Booth, B.G. Modelling shape and parameterising style: An approach to the design of high-fashion shoe lasts. Footwear Sci. 2022, 14, 199–218. [Google Scholar] [CrossRef]
- Chertenko, L.; Spahiu, T.; Lypskyi, T.; Almeida, H.; Bondar, O. Developing lasts with removable toe parts for customized footwear. Commun. Dev. Assem. Text. Prod. 2023, 3, 28–41. [Google Scholar] [CrossRef]
- Wang, D.; Li, Z.; Dey, N.; Misra, B.; Sherratt, R.S.; Shi, F. Curvature generation based on weight-updated boosting using shoe last point-cloud measurements. Heliyon 2024, 10, e26498. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Z.; Dey, N.; González Crespo, R.; Shi, F.; Sherratt, R.S. Design element extraction of plantar pressure imaging employing meta-learning-based graphic convolutional neural networks. Appl. Soft Comput. 2024, 158, 11159. [Google Scholar] [CrossRef]
- Aparecida de Melo, S.; Dutra Pereira, R.B.; Fortes da Silva Reis, A.; Lauro, C.H.; Cardoso Brandão, L. Multi-objective evolutionary optimization of unsupervised latent variables of turning process. Appl. Soft Comput. 2022, 120, 108713. [Google Scholar] [CrossRef]
- Luh, G.C.; Lin, C.Y. Structural topology optimization using ant colony optimization algorithm. Appl. Soft Comput. 2009, 9, 1343–1353. [Google Scholar] [CrossRef]
- Kuo, H.F.; Frederick. Ant colony optimization-based freeform sources for enhancing nanolithographic imaging performance. IEEE Trans. Nanotechnol. 2016, 15, 599–606. [Google Scholar] [CrossRef]
- Fister, I.; Perc, M.; Ljubič, K.; Kamal, S.M.; Iglesias, A. Particle swarm optimization for automatic creation of complex graphic characters. Chaos Solitons Fractals 2015, 73, 29–35. [Google Scholar] [CrossRef]
- Han, G.L. Automatic parking path planning based on ant colony optimization and the grid method. J. Sens. 2021, 2021, 8592558. [Google Scholar] [CrossRef]
- Ferrer-Fuenmayor, S.; Villalba Morales, J.D. Shape optimization of slotted steel plate dampers using the simulated annealing algorithm. J. Appl. Comput. Mech. 2023, 9, 870–883. [Google Scholar]
- Boesack, C.D.; Marwala, T.; Nelwamondo, F.V. On the application of Bezier surfaces for GA-Fuzzy controller design for use in automatic generation control. Energy Procedia 2012, 14, 457–463. [Google Scholar] [CrossRef]
- Alam, M.; Kwok, T.H. Multidisciplinary optimization of shoe midsole structures using swarm intelligence. Struct. Multidiscip. Optim. 2024, 67, 134. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, B. Free-form surface inspection path planning using improved ant colony optimization algorithm. Eng. Res. Express 2022, 4, 035039. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, Z.; Meng, Y.; Shao, C. Data-driven intelligent 3D surface measurement in smart Manufacturing: Review and Outlook. Machines 2021, 9, 13. [Google Scholar] [CrossRef]
Pi,j | 1,1 | 2,1 | 3,1 | 4,1 | 1,1 | 2,1 | 3,1 | 4,1 | 5,1 | 6,1 |
---|---|---|---|---|---|---|---|---|---|---|
P1,1 | 27.6631 | 27.6942 | 27.8012 | 27.3941 | 27.6860 | 27.6712 | 27.3150 | 27.6943 | 27.5010 | 27.7320 |
P1,2 | 27.2626 | 27.0576 | 28.1047 | 27.2793 | 27.2087 | 27.1114 | 27.0277 | 27.8881 | 27.4960 | 27.7907 |
P1,3 | 26.5554 | 27.1792 | 28.3741 | 28.2896 | 27.0154 | 26.7191 | 26.5410 | 28.3519 | 28.3118 | 28.4720 |
P1,4 | 26.4820 | 26.8381 | 28.4118 | 28.0240 | 26.7446 | 26.5754 | 26.2859 | 28.3100 | 28.1258 | 28.5242 |
P2,1 | 27.5308 | 27.7513 | 26.9891 | 26.6823 | 27.6935 | 27.5887 | 27.0835 | 26.9086 | 26.7628 | 27.6064 |
P2,2 | 27.3844 | 27.3601 | 27.5913 | 26.8560 | 27.3780 | 27.3664 | 26.9126 | 27.3983 | 27.0490 | 27.8097 |
P2,3 | 28.3583 | 27.3628 | 27.5642 | 27.7009 | 28.0970 | 27.6241 | 27.2106 | 27.6650 | 27.6001 | 28.2015 |
P2,4 | 27.6445 | 27.2725 | 28.8380 | 26.6733 | 27.5469 | 27.3702 | 26.6198 | 28.2698 | 27.2415 | 27.9831 |
P3,1 | 27.4728 | 26.6841 | 26.3958 | 26.5373 | 27.2658 | 26.8911 | 26.7648 | 26.5002 | 26.4330 | 27.6988 |
P3,2 | 27.7614 | 26.0223 | 28.3057 | 28.2128 | 27.3049 | 26.4788 | 26.8248 | 28.2813 | 28.2372 | 28.4999 |
P3,3 | 27.6942 | 27.9179 | 27.3464 | 28.0121 | 27.8592 | 27.7529 | 26.6368 | 27.8373 | 27.5211 | 28.5025 |
P3,4 | 27.1917 | 29.3360 | 29.0766 | 27.5495 | 28.7732 | 27.7545 | 26.1338 | 28.6757 | 27.9503 | 28.5235 |
P4,1 | 26.6644 | 25.4581 | 28.4788 | 25.7886 | 26.3478 | 25.7748 | 25.9372 | 27.7727 | 26.4947 | 27.3046 |
P4,2 | 26.7604 | 25.5230 | 27.9312 | 25.8832 | 26.4356 | 25.8478 | 25.9693 | 27.3936 | 26.4207 | 27.2654 |
P4,3 | 27.2411 | 28.5583 | 28.0305 | 26.1894 | 28.2126 | 27.5869 | 26.0801 | 27.5473 | 26.6727 | 27.4968 |
P4,4 | 28.2807 | 25.0608 | 24.5530 | 27.1651 | 27.4355 | 25.9059 | 26.3211 | 26.4795 | 25.2386 | 28.3272 |
fitness | 1.6517 | 1.6546 | 1.8663 | 1.7220 | 1.6823 | 1.6240 | 1.5301 | 1.8333 | 1.7542 | 1.8857 |
i,j | 1,1 | 2,2 | 3,2 | 4,2 | 1,2 | 2,2 | 3,2 | 4,2 | 5,2 | 6,2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
P1,1 | 27.6631 | 27.3150 | 27.3941 | 27.4582 | 27.5717 | 27.4064 | 27.1151 | 27.4414 | 27.4110 | 27.7624 | 26.7601 |
P1,2 | 27.2626 | 27.0277 | 27.2793 | 27.8708 | 27.2009 | 27.0893 | 26.9217 | 27.7156 | 27.4346 | 28.0716 | 26.4022 |
P1,3 | 26.5554 | 26.5410 | 28.2896 | 27.2305 | 26.5516 | 26.5448 | 26.3110 | 28.0116 | 27.5085 | 27.9689 | 26.1003 |
P1,4 | 26.4820 | 26.2859 | 28.0240 | 26.1476 | 26.4305 | 26.3374 | 26.1759 | 27.5315 | 26.6401 | 27.6328 | 25.6511 |
P2,1 | 27.5308 | 27.0835 | 26.6823 | 28.0726 | 27.4134 | 27.2009 | 26.8352 | 27.7077 | 27.0472 | 28.2668 | 26.4028 |
P2,2 | 27.3844 | 26.9126 | 26.8560 | 27.6333 | 27.2605 | 27.0365 | 26.7126 | 27.4293 | 27.0600 | 28.1789 | 26.1635 |
P2,3 | 28.3583 | 27.2106 | 27.7009 | 27.8151 | 28.0570 | 27.5118 | 26.7106 | 27.7851 | 27.7309 | 28.2557 | 25.8065 |
P2,4 | 27.6445 | 26.6198 | 26.6733 | 25.9186 | 27.3755 | 26.8888 | 26.3198 | 26.4752 | 26.1167 | 27.6246 | 25.2117 |
P3,1 | 27.4728 | 26.7648 | 26.5373 | 27.1942 | 27.2870 | 26.9507 | 26.5648 | 27.0218 | 26.7097 | 28.0109 | 25.8140 |
P3,2 | 27.7614 | 26.8248 | 28.2128 | 27.9188 | 27.5155 | 27.0706 | 26.6218 | 28.1357 | 27.9960 | 28.3602 | 25.5962 |
P3,3 | 27.6942 | 26.6368 | 28.0121 | 27.3629 | 27.4166 | 26.9143 | 26.0318 | 27.8417 | 27.5333 | 28.1941 | 25.3564 |
P3,4 | 27.1917 | 26.1338 | 27.5495 | 27.9348 | 26.9140 | 26.4115 | 25.9133 | 27.8336 | 27.6506 | 28.7065 | 24.6168 |
P4,1 | 26.6644 | 25.9372 | 25.7886 | 26.5850 | 26.4735 | 26.1281 | 25.7371 | 26.3759 | 25.9977 | 27.6829 | 24.8471 |
P4,2 | 26.7604 | 25.9693 | 25.8832 | 26.7065 | 26.5528 | 26.1770 | 25.8613 | 26.4904 | 26.0993 | 27.6565 | 24.7543 |
P4,3 | 27.2411 | 26.0801 | 26.1894 | 27.1748 | 26.9364 | 26.3849 | 25.8801 | 26.9162 | 26.4481 | 27.9649 | 24.6025 |
P4,4 | 28.2807 | 26.3211 | 27.1651 | 24.5809 | 27.7663 | 26.8354 | 26.2221 | 26.4868 | 25.2592 | 27.0996 | 23.8512 |
fitness | 1.6517 | 1.5301 | 1.7220 | 1.6498 | 1.6194 | 1.5616 | 1.0085 | 1.7388 | 1.6299 | 1.8490 | 0.000461 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, J.A.M. Metaheuristic Algorithm and Laser Projection for Adjusting the Model of the Last Lower Surface to a Footprint. Biomimetics 2024, 9, 699. https://doi.org/10.3390/biomimetics9110699
Rodríguez JAM. Metaheuristic Algorithm and Laser Projection for Adjusting the Model of the Last Lower Surface to a Footprint. Biomimetics. 2024; 9(11):699. https://doi.org/10.3390/biomimetics9110699
Chicago/Turabian StyleRodríguez, J. Apolinar Muñoz. 2024. "Metaheuristic Algorithm and Laser Projection for Adjusting the Model of the Last Lower Surface to a Footprint" Biomimetics 9, no. 11: 699. https://doi.org/10.3390/biomimetics9110699
APA StyleRodríguez, J. A. M. (2024). Metaheuristic Algorithm and Laser Projection for Adjusting the Model of the Last Lower Surface to a Footprint. Biomimetics, 9(11), 699. https://doi.org/10.3390/biomimetics9110699