Characterization of FDG PET Images Using Texture Analysis in Tumors of the Gastro-Intestinal Tract: A Review
Abstract
:1. Introduction
2. Eligible Studies
3. Technical Aspects
3.1. Tumor Volume Segmentation and Volume Requirements
3.2. Volumetrics
3.3. SUV Discretization or Resampling Image Intensity Values
3.4. Textural Feature Extraction
4. Esophageal Carcinoma
5. Gastric Carcinoma
6. Hepatocellular Carcinoma (HCC)
7. Pancreas Carcinoma
8. Colorectal Carcinoma
9. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Hillner, B.; Siegel, B.; Liu, D.; Shields, A.; Gareen, I.; Hanna, L.; Stine, S.H.; Coleman, R.E. Impact of Positron Emission Tomography/Computed Tomography and Positron Emission Tomography (PET) Alone on Expected Management of Patients with Cancer: Initial Results from the National Oncologic PET Registry. J. Clin. Oncol. 2007, 26, 2155–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009, 50, 122S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, K.; Benz, M.R.; Krause, B.; Pomykala, K.L.; Buck, A.K.; Czernin, J. (18)F-FDG-PET/CT in evaluating response to therapy in solid tumors: Where we are and where we can go. Q. J. Nucl. Med. Mol. Imaging 2011, 55, 620–632. [Google Scholar] [PubMed]
- Chicklore, S.; Goh, V.; Siddique, M.; Roy, A.; Marsden, P.K.; Cook, G. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Hatt, M.; Tixier, F.; Pierce, L.; Kinahan, P.; Cheze le Rest, C.; Visvikis, D. Charcterization of PET/CT images using texture analysis: The past, the present...any future? Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 151–165. [Google Scholar] [CrossRef]
- Dierckx, R.A.; Van De Wiele, C. FDG Uptake, a surrogate of tumour hypoxia? Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1544–1549. [Google Scholar] [CrossRef] [Green Version]
- Van De Wiele, C.; Kruse, V.; Smeets, P.; Sathekge, M.; Maes, A. Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 290–301. [Google Scholar] [CrossRef]
- Bashir, U.; Azad, G.; Siddique, M.; Dhillon, S.; Patel, N.; Bassett, P.; Landau, D.; Goh, V.; Cook, G. The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer. EJNMMI Res. 2017, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Brooks, F.; Grigsby, P. The effect of small tumor volumes upon intra-tumoral tracer uptake heterogeneity studies. J. Nucl. Med. 2014, 55, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Hatt, M.; Majdoub, M.; Vallières, M.; Tixier, F.; Cheze le Rest, C.; Gorheux, D.; Hindié, E.; Martineau, A.; Pradier, O.; Hustinx, R.; et al. 18F-FDG uptake characterization through texture analysis: Investigating the complementary nature of heterogeneity and functional tumor volume in a multi-center site patient cohort. J. Nucl. Med. 2015, 56, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Leijenar, R.; Nalbantov, G.; Carvalho, S.; Van Elmpt, W.; Troost, E.; Boellaard, R.; Aerts, H.; Gillies, R.; Lambin, P. The effect of SUV discretization in quantitative FDG-PET Radiomics: The need for standardized methodology in tumor texture analysis. Sci. Rep. 2015, 5, 11075. [Google Scholar] [CrossRef]
- Forgács, A.; Béresová, M.; Garai, I.; Lassen, M.L.; Beyer, T.; DiFranco, M.; Berényi, E.; Balkay, L. Impact of intensity discretization on textural indices of [18F]FDG-PET tumour heterogeneity in lung cancer patients. Phys. Med. Biol. 2019, 64, 125016. [Google Scholar] [CrossRef] [PubMed]
- Tixier, F.; le Reste, C.; Hatt, M.; Albarghach, N.; Pradier, O.; Metges, J.; Corcos, L.; Visvikis, D. Intratumor heterogeneitty characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J. Nucl. Med. 2011, 52, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlhac, F.; Soussan, M.; Chouahnia, K.; Martinod, E.; Buvat, I. 18F-FDG PET-Derived Textural Indices Reflect Tissue-Specific Uptake Pattern in Non-Small Cell Lung Cancer. PLoS ONE 2015, 10, e0145063. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.; Kim, S.; So, H.; Kim, H.; Cheon, G.; Lee, E.; Kang, K.; Lee, D. Recent tends in PET image interpretations using volumetric and texture-based quantification methods in nuclear oncology. Nucl. Med. Mol. Imaging 2014, 48, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reece-Smith, A.; Saha, S.; Cunnell, M.; Hameed, K.; Bessell, E.; Duffy, J.; Madhusudan, S.; Parsons, S. MAGIC in practice: Experience of peri-operative ECF/X chemotherapy in gastro-esophageal adenocarcinomas. J. Surg. Oncol. 2012, 106, 748–752. [Google Scholar] [CrossRef]
- Medical Research Council Oesophageal Cancer Working Group. Surgical resection with or without preoperative chemotherapy in oesophageal cancer: A randomised controlled trial. Lancet 2002, 359, 1727–1733. [Google Scholar] [CrossRef]
- Van Hagen, P.; Hulshof, M.; van Lanschot, J.; Steyerberg, E.; van Berge Henegouwen, M.; Wijnhoven, B.; Richel, D.; Nieuwenhuijzen, G.A.; Hospers, G.A.; Bonenkamp, J.J.; et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef] [Green Version]
- Eyck, B.; Onstenk, D.; Noordman, B.; Nieboer, D.; Spaander, M.; Valkema, R.; Lagarde, S.; Wijnhoven, B.; van Lanschot, J. Accuracy of detecting residual disease after neoadjuvant chemoradiotherapy for esophageal cancer: A systematic review and meta-analysis. Ann. Surg. 2019, 271, 245–256. [Google Scholar] [CrossRef]
- Tan, S.; Kligerman, S.; Chen, W.; Lu, M.; Kim, G.; Feigenberg, S.; D’Souza, W.; Suntharalingam, M.; Lu, W. Spatial-temporal FDG PET features for predciting pathologic response of esophageal cancer to neoadjuvant chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- van Rossum, P.; Fried, D.; Zhang, L.; Wayne, L.; Hofstetter, L.; van Vulpen, M.; Meijer, G.; Court, L.; Lin, S. The incremental value of subjective and quantitative assessment of 18F-FDG PET for the prediction of pathologic complete response in preoperative chemoradiotherapy in esophageal cancer. J. Nucl. Med. 2016, 57, 691–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yip, S.; Corolier, T.; Sanford, N.; Huyn, E.; Mamon, H.; Aerts, H.; Berbeco, R. Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction. Phys. Med. Biol. 2016, 61, 906–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desbordes, P.; Ruan, S.; Modzelewski, R.; Pineau, P.; Vauclin, S.; Goeul, P.; Michel, P.; Di Fiore, F.; Vera, P.; Gardin, I. Predictive value of initial FDG-PET features for treatment response and survival in esophageal cancer patients treated with chemo-radiation therapy using a random forest classifier. PLoS ONE 2017, 12, e0173208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, K.; Hills, R.; Berthon, B.; Marshall, C.; Parkinson, C.; Lewis, W.; Crosby, T.; Spezi, E.; Roberts, S. Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer. Eur. Radiol. 2018, 28, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Baiocco, S.; Sah, B.; Mallia, A.; Kelly-Morland, C.; Neji, R.; Stirling, J.; Jejeli, S.; Bevilavqua, A.; Cook, G.; Goh, V. Exploratory radiomic feautures from integrated 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging are associated with contemporaneous metastases in oesophageal/gastroesophageal cancer. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1478–1484. [Google Scholar] [CrossRef] [Green Version]
- Nakajo, M.; Jinguji, M.; Nakabeppu, Y.; Nakajo, M.; Higashi, R.; Fukukura, Y.; Sasaki, K.; Uchikado, Y.; Natsugoe, S.; Yoshiura, T. Texture analysis of 18F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 206–214. [Google Scholar] [CrossRef]
- Kim, I. Cuurent status of adjuvant chemotherapy for gastric cancer. World J. Gastrointest. Oncol. 2019, 11, 679–685. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, Q.; Lv, W.; Xi, S.; Huang, W.; Sun, Z.; Chen, H.; Zhao, L.; Liu, W.; Hu, Y.; et al. Radiomic signature of 18F fluorodeoxyglucose PET/CT for prediction of gastric cancer survival and chemotherapeutic benefits. Theranostics 2018, 8, 5915–5928. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Lee, J. Emerging role of 18F-fluorodeoxyglucose positron emission tomography for guiding management pf hepatocellular carcinoma. World J. Gastroenterol. 2019, 25, 1289–1306. [Google Scholar] [CrossRef]
- Blanc-Durand, P.; Van Der Gucht, A.; Jreige, M.; Nicod-Lalonde, M.; Silva-Monteiro, M.; Prior, J.O.; Denys, A.; Depeursinge, A.; Schaefer, N. Signature of survival: A 18F-FDG PET based whole-liver radiomic analysis predicts survival after 90Y-TARE for hepatocellular carcinoma. Oncotarget 2017, 9, 4549–4558. [Google Scholar] [CrossRef] [Green Version]
- Conlon, K.C.; Klimstra, D.S.; Brennan, M.F. Long-Term Survival After Curative Resection for Pancreatic Ductal Adenocarcinoma. Ann. Surg. 1996, 223, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Huyn, S.; Kim, H.; Choi, S.; Choi, D.; Lee, J.; Lee, K.; Park, J.; Lee, K.; Kim, B.; Choi, J. Intratumoral heterogenity of 18F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Osipov, A.; Fraass, B.; Sandler, H.; Zhang, X.; Nissen, N.; Hendifar, A.; Tuli, R. Identifying prognostic intratumor heterogenity using pre- and post-radiotherapy 18F-FG PET images for pancreatic cancer patients. J. Gastrintest. Oncol. 2017, 8, 127–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haggar, F.; Boushey, R. Colorectal Cancer Epidemiology: Incidence, Mortality, Survival, and Risk Factors. Colon Rectal Surg. 2009, 22, 191–197. [Google Scholar] [CrossRef] [Green Version]
- NCCN Guidelines Version 3.2017, Rectal Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf (accessed on 3 February 2020).
- Sauer, R.; Becker, H.; Hohenberger, W.; Rödel, C.; Wittekind, C.; Fietkau, R.; Martus, P.; Tschmelitsch, J.; Hager, E.; Hess, C.F.; et al. Preoperative versus post-operative chemoradiotherapy for rectal cancer. N. Eng. J. Med. 2004, 351, 1731–1740. [Google Scholar] [CrossRef] [Green Version]
- Nakajo, M.; Kajiya, Y.; Tani, A.; Jinguji, M.; Nakajo, M.; Kitazono, M.; Yoshiuar, T. A pilot study for texture analysis of 18F-FDG and 18F-FLT-PET/CT to predict tumor recurrence of patients with colorectal cancer who reveiced surgery. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 2158–2168. [Google Scholar] [CrossRef]
- Lovinfosse, P.; Polus, M.; Van Daele, D.; Martinive, P.; Daenen, F.; Hatt, M.; Visvikis, D.; Koopmansch, B.; Lambert, F.; Coimbra, C.; et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur. J. Nucl. Med. Mol. Imaging 2017, 45, 365–375. [Google Scholar] [CrossRef]
- Giannini, V.; Mazzetti, S.; Bertotto, I.; Chiarenza, C.; Cauda, S.; Delmastro, E.; Bracco, C.; Di Dia, A.; Leone, F.; Medico, E.; et al. Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 878–888. [Google Scholar] [CrossRef]
- Lovinfosse, P.; Koopmansch, B.; Lambert, F.; Jodogne, S.; Kustermans, G.; Hatt, M.; Visvikis, D.; Seidel, L.; Polus, M.; Albert, A.; et al. 18F-FDG PET/CT imaging in rectal cancer: Relationship with the RAS mutational status. Br. J. Radiol. 2016, 89, 20160212. [Google Scholar] [CrossRef] [Green Version]
- Rahmim, A.; Bak-Fredslund, K.P.; Ashrafinia, S.; Lu, L.; Schmidtlein, R.; Subramaniam, R.M.; Morsing, A.; Keiding, S.; Horsager, J.; Munk, O.L. Prognostic modeling for patients with colorectal liver metastases incorporating FDG PET radiomic features. Eur. J. Radiol. 2019, 113, 101–109. [Google Scholar] [CrossRef]
- Yan, J.; Lim, J.C.-S.; Loi, H.; Khor, L.; Sinha, A.; Quek, S.; Tham, I.; Townsend, D. Impact of image reconstruction settings on Texture Features in 18F-FDG PET. J. Nucl. Med. 2015, 56, 1667–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galavis, P.; Hollensen, C.; Jallow, N.; Paliwal, B.; Jeraj, R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010, 49, 1012–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlhac, F.; Boughdad, S.; Philippe, C.; Stalla-Bourdillon, H.; Nioche, C.; Champion, L.; Soussan, M.; Frouin, F.; Frouin, V.; Buvat, I. A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET. J. Nucl. Med. 2018, 59, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Shimono, T.; Komeya, Y.; Ando, R.; Kagawa, Y.; Katsube, T.; Kuwabara, M.; Yagyu, Y.; Kumano, S.; Imaoka, I.; et al. Adrenbal masses: The value of additional fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in differentiating between benign and malignant lesions. Ann. Nucl. Med. 2009, 23, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Tann, M.; Sandrasegaran, K.; Jennings, S.; Skandarajah, A.; McHenry, L.; Schmidt, C. Positron-emission tomography and computed tomography of cystic pancreatic masses. Clin. Radiol. 2007, 62, 745–751. [Google Scholar] [CrossRef]
- Orlacchio, A.; Schillaci, O.; Antonelli, L.; D’Urso, S.; Sergiacomi, G.; Nicoli, P.; Simonetti, G. Solitary pulmonary nodules: Morphological and metabolic characterisation by FDG-PET-MDCT. La Radiol. Medica 2007, 112, 157–173. [Google Scholar] [CrossRef]
- Nomori, H.; Watanabe, K.; Ohtsuka, T.; Naruke, T.; Suemasu, K.; Uno, K. Visual and Semiquantitative Analyses for F-18 Fluorodeoxyglucose PET Scanning in Pulmonary Nodules 1 cm to 3 cm in Size. Ann. Thorac. Surg. 2005, 79, 984–988. [Google Scholar] [CrossRef]
- Kang, W.; Chung, J.; So, Y.; Jeong, J.; Lee, D.; Lee, M. Differentiation of mediastinal FDG uptake observed in patients with non-thoracic tumours. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 202–207. [Google Scholar]
- Nakamoto, Y.; Higashi, T.; Sakahara, H.; Tamaki, N.; Kogire, M.; Doi, R.; Hosotani, R.; Imamura, M.; Konishi, J. Delayed (18)F-fluoro-2-deoxy-D-glucose positron emission tomography scan for differentiation between malignant and benign lesions in the pancreas. Cancer 2000, 89, 2547–2554. [Google Scholar] [CrossRef]
- Erdi, Y.; Mawlawi, O.; Larson, S.; Imbriaco, M.; Yeung, H.; Finn, R.; Humm, J. Segmentation of lung lesion volume by adaptive psoitron emission tomography image thresholding. Cancer 1997, 15, 2505–2509. [Google Scholar] [CrossRef]
- Zasadby, K.; Kison, P.; Francis, R.; Wahl, R. FDG-PET determination of metabolically active tumor volume and comparison with CT. Clin. Positron Imaging 1998, 1, 123–129. [Google Scholar] [CrossRef]
- Liao, S.; Penney, B.; Zhang, H.; Suzuki, K.; Pu, Y. Prognostic Value of the Quantitative Metabolic Volumetric Measurement on 18F-FDG PET/CT in Stage IV Nonsurgical Small-cell Lung Cancer. Acad. Radiol. 2012, 19, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wroblewski, K.; Appelbaum, D.; Pu, Y. Independent prognostic value of whole-body metabolic tumor burden from FDG-PET in non-small cell lung cancer. Int. J. Comput. Assist. Radiol. Surg. 2012, 8, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Lasnon, C.; Enilorac, B.; Popotte, H.; Aide, N. Impact of the EARL harmonization program on automatic delineation of metabolic active tumour volumes (MATVs). EJNMMI Res. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlhac, F.; Nioche, C.; Soussan, M.; Buvat, I. Understanding changes in tumor textural indices in PET: A comparison between visual assessment and index values in simulated and patient data. J. Nucl. Med. 2016, 58, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Chalkidou, A.; O’Doherty, M.J.; Marsden, P.K. False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review. PLoS ONE 2015, 10, e0124165. [Google Scholar] [CrossRef] [Green Version]
- Sanduleanu, S.; Woodruff, H.C.; de Jong, E.E.; van Timmeren, J.E.; Jochems, A.; Dubois, L.; Lambin, P. Tracking tumor biology with radiomics: A systematic review utilizing a radiomics quality score. Radiother. Oncol. 2018, 127, 349–360. [Google Scholar] [CrossRef]
- Mainenti, P.P.; Stanzione, A.; Guarino, S.; Romeo, V.; Ugga, L.; Romano, F.; Storto, G.; Maurea, S.; Brunetti, A. Colorectal cancer: Parametric evaluation of morphological, functional and molecular tomographic imaging. World J. Gastroenterol. 2019, 25, 5233–5256. [Google Scholar] [CrossRef]
- Hayano, K.; Ohira, G.; Hirata, A.; Aoyagi, T.; Imanishi, S.; Tochigi, T.; Hanakoa, T.; Shuto, K.; Matsubara, H. Imaging biomarkers for the treatment of esophageal cancer. World J. Gastroenterol. 2019, 25, 3021–3029. [Google Scholar] [CrossRef]
Authors | Nb pts | Camera | Volume Segmentation | MTV | Clinically Relevant Variables |
---|---|---|---|---|---|
Tixier et al. 2011 [13] | 20 | NS | GBM | NS | entropy, local homogeneity, intensity variability, size-zone variability |
Tan et al. 2013 [20] | 20 | Philips | SUV ≥ 2.5 | NS | inertia, cluster prominence, correlation |
Hatt et al. 2015 [10] | 129 | Philips | GBM | specified for the entire cohort of 555 patients | when dichotomized with optimal cut-off values in the KM analysis; MTV and dissimilarity |
Yip et al. 2015 [22] | 45 | GE | >40% RG | 6–440 cm3 | entropy, short high grey run emphasis |
Van Rossum et al. 2016 [21] | 27 | NS | GBM | NS | post-treatment TLG |
Desbordes et al. 2017 [23] | 65 | Siemens | GBM | 2.5–141 cm3 | MTV, homogeneity |
Nakajo et al. 2017 [26] | 52 | GE | SUV ≥ 2.5 | 10.2–282 cm3 | MTV, TLG, intensity variability, size-zone variability |
Foley et al. 2018 [24] | 403-202 development set-101 validation set | GE | in-house segmentation method | NS | log TLG, log histogram entropy, log histogram kurtosis |
Authors | Nb pts | Camera | Volume Segmentation | MTV | Clinically Relevant Variables |
---|---|---|---|---|---|
Nakajo et al. 2017 [37] | 32 | GE | SUV ≥ 2.5 | 10.1–120 cm3 | heterogeneity parameters, intensity variability, size-zone variability |
Lovinfosse et al. 2017 [38] | 86 | Philips | GBM | NS | SUVmax, dissimilarity and contrast |
Giannini et al. 2019 [39] | 57 | Philips | adjusted threshold algorythm | NS | MTV, TLG, homogeneity, contrast |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deleu, A.-L.; Sathekge, M.J.; Maes, A.; De Spiegeleer, B.; Sathekge, M.; Van de Wiele, C. Characterization of FDG PET Images Using Texture Analysis in Tumors of the Gastro-Intestinal Tract: A Review. Biomedicines 2020, 8, 304. https://doi.org/10.3390/biomedicines8090304
Deleu A-L, Sathekge MJ, Maes A, De Spiegeleer B, Sathekge M, Van de Wiele C. Characterization of FDG PET Images Using Texture Analysis in Tumors of the Gastro-Intestinal Tract: A Review. Biomedicines. 2020; 8(9):304. https://doi.org/10.3390/biomedicines8090304
Chicago/Turabian StyleDeleu, Anne-Leen, Machaba Junior Sathekge, Alex Maes, Bart De Spiegeleer, Mike Sathekge, and Christophe Van de Wiele. 2020. "Characterization of FDG PET Images Using Texture Analysis in Tumors of the Gastro-Intestinal Tract: A Review" Biomedicines 8, no. 9: 304. https://doi.org/10.3390/biomedicines8090304