Studying Rare Movement Disorders: From Whole-Exome Sequencing to New Diagnostic and Therapeutic Approaches in a Modern Genetic Clinic
<p>Main results of the study. Green: Positive results (diagnostic yield) reached 27% (22 out of 82 probands) (<b>left</b>), of whom 26% (21) with pathogenic or likely pathogenic variants, and 1% (1) with strong-gene VUS candidate (green filled circle) (<b>right</b>). Blue: differently, 58% (71) of patients resulted negative, and 2.4% patients (2) resulted as VUS-non strong candidates (<b>left</b>).</p> "> Figure 2
<p>Flowchart of the ideal diagnostic algorithm for patients presenting in the movement disorders genetic clinic. Based on the family history, brain imaging, and clinical phenotype; after having ruled out the most common and reversible causes, patients undergo genetic testing. First, commercial panels or sequencing of single genes is recommended, based on costs and patients’ availabilities. Then, if negative or of uncertain significance, testing through research avenues is recommended. SCAs, spinocerebellar ataxia; RFC1, replication factor C subunit 1—gene of cerebellar ataxia, neuropathy and vestibular areflexia—CANVAS; FGF14, fibroblast growth factor 14—gene of SCA27B; GP2, Global Parkinson’s Genetics Program; WES, whole-exome sequencing; WGS, whole-genome sequencing.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants, Locations, and Clinical Data
2.2. Technical Procedure
2.3. Whole Exome Sequencing
2.4. Data Analysis
- Positive: A pathogenic/likely pathogenic variant in a known disease gene is identified with a compatible phenotypic and inheritance overlap.
- VUS: A pathogenic/likely pathogenic variant in a putative candidate gene is identified without positive phenotypic and inheritance overlap; one pathogenic/likely pathogenic variant is identified with a positive phenotypic overlap in a recessive disorder (unable to be detected in the other allele) and one pathogenic/likely pathogenic variants are identified in a potential candidate gene not yet associated with disease; VUS are then further divided into two main categories, according to their odds of pathogenicity [25]: (1) non-diagnostic but with a strong gene candidate (strong-gene VUS candidate) (e.g., a VUS variant with incomplete characteristics to be classified as pathogenic or likely pathogenic, but interpreted with high probability as disease-causing by the genetic analyst—MAK) [25], and (2) non-diagnostic and non-strong candidate (non-strong gene VUS candidate).
- Negative: No variants are identified.
2.5. Expansion of Disease-Related Annotations in Biomedical Literature
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Parkinson and Movement Disorder Society Webpage. Available online: https://www.movementdisorders.org/MDS/For-Clinicians/Rare-Movement-Disorders.htm (accessed on 8 November 2024).
- Carmichael, N.; Tsipis, J.; Windmueller, G.; Mandel, L.; Estrella, E. “Is it going to hurt?”: The impact of the diagnostic odyssey on children and their families. J. Genet. Couns. 2015, 24, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Salinas, V.; Vega, P.; Marsili, L.; Pérez-Maturo, J.; Martínez, N.; Zavala, L.; González-Morón, D.; Medina, N.; Rodriguez-Quiroga, S.A.; Amartino, H.; et al. The odyssey of complex neurogenetic disorders: From undetermined to positive. Am. J. Med. Genet. C Semin. Med. Genet. 2020, 184, 876–884. [Google Scholar] [CrossRef]
- Lee, A. Omaveloxolone: First Approval. Drugs 2023, 83, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Pena, N.; Richbourg, T.; Gonzalez-Hunt, C.P.; Qi, R.; Wren, P.; Barlow, C.; Shanks, N.F.; Carlisle, H.J.; Sanders, L.H. G2019S selective LRRK2 kinase inhibitor abrogates mitochondrial DNA damage. NPJ Park. Dis. 2024, 10, 49. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT05418673?cond=Parkinson%20Disease&term=LRRK2&intr=BIIB122&rank=1&tab=table (accessed on 4 April 2024).
- Clinicaltrials.gov. Available online: https://clinicaltrials.gov/study/NCT05677659?cond=ALSP&term=VGL101&rank=1 (accessed on 4 April 2024).
- Shambetova, C.; Klein, C. Genetic testing for non-parkinsonian movement disorders: Navigating the diagnostic maze. Park. Relat. Disord. 2024, 121, 106033. [Google Scholar] [CrossRef]
- Might, M.; Wilsey, M. The shifting model in clinical diagnostics: How next-generation sequencing and families are altering the way rare diseases are discovered, studied, and treated. Genet. Med. 2014, 16, 736–737. [Google Scholar] [CrossRef]
- González-Morón, D.; Vishnopolska, S.; Consalvo, D.; Medina, N.; Marti, M.; Córdoba, M.; Vazquez-Dusefante, C.; Claverie, S.; Rodríguez-Quiroga, S.A.; Vega, P.; et al. Germline and somatic mutations in cortical malformations: Molecular defects in Argentinean patients with neuronal migration disorders. PLoS ONE 2017, 12, e0185103. [Google Scholar] [CrossRef]
- Córdoba, M.; Rodriguez-Quiroga, S.A.; Vega, P.A.; Salinas, V.; Perez-Maturo, J.; Amartino, H.; Vásquez-Dusefante, C.; Medina, N.; González-Morón, D.; Kauffman, M.A. Whole exome sequencing in neurogenetic odysseys: An effective, cost- and time-saving diagnostic approach. PLoS ONE 2018, 13, e0191228. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Manín, A.; Medina, N.; Rodríguez-Quiroga, S.; González-Morón, D.; Rosales, J.; Amartino, H.; Specola, N.; Córdoba, M.; Kauffman, M.; et al. Argentinian clinical genomics in a leukodystrophies and genetic leukoencephalopathies cohort: Diagnostic yield in our first 9 years. Ann. Hum. Genet. 2020, 84, 11–28. [Google Scholar] [CrossRef]
- Perez Maturo, J.; Zavala, L.; Vega, P.; González-Morón, D.; Medina, N.; Salinas, V.; Rosales, J.; Córdoba, M.; Arakaki, T.; Garretto, N.; et al. Overwhelming genetic heterogeneity and exhausting molecular diagnostic process in chronic and progressive ataxias: Facing it up with an algorithm, a gene, a panel at a time. J. Hum. Genet. 2020, 65, 895–902. [Google Scholar] [CrossRef]
- Yang, Y.; Muzny, D.M.; Reid, J.G.; Bainbridge, M.N.; Willis, A.; Ward, P.A.; Braxton, A.; Beuten, J.; Xia, F.; Niu, Z.; et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. 2013, 369, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Marsili, L.; Duque, K.R.; Bode, R.L.; Kauffman, M.A.; Espay, A.J. Uncovering Essential Tremor Genetics: The Promise of Long-Read Sequencing. Front. Neurol. 2022, 13, 821189. [Google Scholar] [CrossRef]
- Tan, A.H.; Saffie-Awad, P.; Schuh, A.F.S.; Lim, S.Y.; Madoev, H.; Ahmad-Annuar, A.; Solle, J.; Wegel, C.E.; Doquenia, M.L.; Dey, S.; et al. Global Perspectives on Returning Genetic Research Results in Parkinson’s Disease. Neurology, 2024; submitted. [Google Scholar]
- Freiman, A.; Rekab, A.; Bergner, A.L.; Pereira, E.M.; Lin, Y.; Ahimaz, P. Exploring the evolving roles of clinical geneticists and genetic counselors in the era of genomic medicine. Am. J. Med. Genet. Part A 2024, 194, e63502. [Google Scholar] [CrossRef]
- Green, R.C.; Berg, J.S.; Grody, W.W.; Kalia, S.S.; Korf, B.R.; Martin, C.L.; McGuire, A.L.; Nussbaum, R.L.; O’Daniel, J.M.; Ormond, K.E.; et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 2013, 15, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Kozarewa, I.; Turner, D.J. Amplification-free library preparation for paired-end Illumina sequencing. Methods Mol. Biol. 2011, 733, 257–266. [Google Scholar] [CrossRef]
- Margraf, R.L.; Durtschi, J.D.; Dames, S.; Pattison, D.C.; Stephens, J.E.; Voelkerding, K.V. Variant identification in multi-sample pools by illumina genome analyzer sequencing. J. Biomol. Tech. 2011, 22, 74–84. [Google Scholar]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997v2. [Google Scholar]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Tavtigian, S.V.; Greenblatt, M.S.; Harrison, S.M.; Nussbaum, R.L.; Prabhu, S.A.; Boucher, K.M.; Biesecker, L.G.; ClinGen Sequence Variant Interpretation Working Group (ClinGen SVI). Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet. Med. 2018, 20, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Wenger, A.M.; Guturu, H.; Bernstein, J.A.; Bejerano, G. Systematic reanalysis of clinical exome data yields additional diagnoses: Implications for providers. Genet. Med. 2017, 19, 209–214. [Google Scholar] [CrossRef]
- Marsili, L.; Sharma, J.; Espay, A.J.; Migazzi, A.; Abdelghany, E.; Hill, E.J.; Duque, K.R.; Hagen, M.C.; Stephen, C.D.; Kovacs, G.G.; et al. Neither a Novel Tau Proteinopathy nor an Expansion of a Phenotype: Reappraising Clinicopathology-Based Nosology. Int. J. Mol. Sci. 2021, 22, 7292. [Google Scholar] [CrossRef] [PubMed]
- Marsili, L.; Kauffman, M.A.; Florat, D.R.; Zaidi, A.; Botsford, V.; Sharma, J.; Keeling, E.G.; Broderick, J.P.; Sumanas, S.; Espay, A.J. Resolving ‘vascular parkinsonism’––COL22A1 as a genetic adult-onset leukoencephalopathy. Park. Relat. Disord. 2023. [Google Scholar] [CrossRef]
- Marsili, L.; Davis, J.L.; Espay, A.J.; Gilthorpe, J.; Williams, C.; Kauffman, M.A.; Porollo, A. SOD1-Related Cerebellar Ataxia and Motor Neuron Disease: Cp Variant as Functional Modifier? Cerebellum 2024, 23, 205–209. [Google Scholar] [CrossRef]
- Witek, N.; Hawkins, J.; Hall, D. Genetic ataxias: Update on classification and diagnostic approaches. Curr. Neurol. Neurosci. Rep. 2021, 21, 13. [Google Scholar] [CrossRef]
- Understanding the Genetic Architecture of Parkinson’s Disease. Available online: https://gp2.org (accessed on 4 April 2024).
- Lewin, H.A.; Robinson, G.E.; Kress, W.J.; Baker, W.J.; Coddington, J.; Crandall, K.A.; Durbin, R.; Edwards, S.V.; Forest, F.; Gilbert, M.T.P.; et al. Earth BioGenome Project: Se-quencing life for the future of life. Proc. Natl. Acad. Sci. USA 2018, 115, 4325–4333. [Google Scholar] [CrossRef]
- Miller, M.; Cook, L.; Verbrugge, J.; Hodges, P.D.; Head, K.J.; Nance, M.A. Delivering Genetic Test Results for Parkinson Disease: A Qualitative Approach to Provider Experiences in the PD GENEration Study. Neurol. Clin. Pract. 2024, 14, e200282. [Google Scholar] [CrossRef]
- Wiss, F.M.; Jakober, D.; Lampert, M.L.; Allemann, S.S. Overcoming Barriers: Strategies for Implementing Pharmacist-Led Pharmacogenetic Services in Swiss Clinical Practice. Genes 2024, 15, 862. [Google Scholar] [CrossRef]
- Zech, M.; Winkelmann, J. Next-generation sequencing and bioinformatics in rare movement disorders. Nat. Rev. Neurol. 2024, 20, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Duque, K.R.; Marsili, L.; Sturchio, A.; Mahajan, A.; Merola, A.; Espay, A.J.; Kauffman, M.A. Progressive Ataxia with Hemiplegic Migraines: A Phenotype of CACNA1A Missense Mutations, Not CAG Repeat Expansions. Cerebellum 2021, 20, 134–139. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Overall, N = 88 |
---|---|
Sex | |
F | |
(%) | 55 (63%) |
M | |
(%) | 33 (38%) |
Ancestry | |
African American | |
(%) | 5 (5.72%) |
European | |
(%) | 82 (93.2%) |
Other | |
(%) | 1 (1.08%) |
Ethnicity | |
Hispanic or Latino | 1 (1.1%) |
Excluded (Family members of probands) | 6 (6.8%) |
Characteristics | Pathogenic/ Likely, N = 26 | VUS, N = 4 | Negative, N = 58 | p-Value | Pathogenic/Likely vs. VUS | Pathogenic/Likely vs. no Mutation | VUS vs. Negative |
---|---|---|---|---|---|---|---|
Sex | 0.14 | ||||||
F (%) | 19 (73%) | 1 (25%) | 35 (60%) | ||||
M (%) | 7 (27%) | 3 (75%) | 23 (40%) | ||||
Ancestry | 0.8 | ||||||
African American (%) | 2 (8%) | 0 (0%) | 3 (5%) | ||||
European (%) | 22 (92%) | 7 (100%) | 53 (93%) | ||||
Hispanic (%) | 0 (0%) | 0 (0%) | 1 (1.8%) | ||||
>0.99 | |||||||
Hispanic or Latino (%) | 0 (0%) | 0 (0%) | 1 (2%) | ||||
Non-Hispanic (%) | 26 (100%) | 4 (100%) | 57 (98%) | ||||
Age at symptoms onset | 27.5 5 | 61 (47–63.5) | 57 (40–65) | 0.02 | 0.24 | 0.02 | 0.78 |
Age at examination | 52 (37–66) | 67 (60–75) | 65.5 (49–71) | 0.09 | |||
Number of relatives | 1.4 (1.8) | 1.5 (1.3) | 0.7 (1.3) | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsili, L.; Duque, K.R.; Abanto, J.; Chinchihualpa Paredes, N.O.; Duker, A.P.; Collins, K.; Miranda, M.; Bustamante, M.L.; Pauciulo, M.; Dixon, M.; et al. Studying Rare Movement Disorders: From Whole-Exome Sequencing to New Diagnostic and Therapeutic Approaches in a Modern Genetic Clinic. Biomedicines 2024, 12, 2673. https://doi.org/10.3390/biomedicines12122673
Marsili L, Duque KR, Abanto J, Chinchihualpa Paredes NO, Duker AP, Collins K, Miranda M, Bustamante ML, Pauciulo M, Dixon M, et al. Studying Rare Movement Disorders: From Whole-Exome Sequencing to New Diagnostic and Therapeutic Approaches in a Modern Genetic Clinic. Biomedicines. 2024; 12(12):2673. https://doi.org/10.3390/biomedicines12122673
Chicago/Turabian StyleMarsili, Luca, Kevin R. Duque, Jesus Abanto, Nathaly O. Chinchihualpa Paredes, Andrew P. Duker, Kathleen Collins, Marcelo Miranda, M. Leonor Bustamante, Michael Pauciulo, Michael Dixon, and et al. 2024. "Studying Rare Movement Disorders: From Whole-Exome Sequencing to New Diagnostic and Therapeutic Approaches in a Modern Genetic Clinic" Biomedicines 12, no. 12: 2673. https://doi.org/10.3390/biomedicines12122673
APA StyleMarsili, L., Duque, K. R., Abanto, J., Chinchihualpa Paredes, N. O., Duker, A. P., Collins, K., Miranda, M., Bustamante, M. L., Pauciulo, M., Dixon, M., Chaib, H., Perez-Maturo, J., Hill, E. J., Espay, A. J., & Kauffman, M. A. (2024). Studying Rare Movement Disorders: From Whole-Exome Sequencing to New Diagnostic and Therapeutic Approaches in a Modern Genetic Clinic. Biomedicines, 12(12), 2673. https://doi.org/10.3390/biomedicines12122673