Clinical and Genetic Characterization of Adolescent-Onset Epilepsy: A Single-Center Experience in Republic of Korea
<p>Diagnostic workflow for genetic diagnosis in adolescent-onset epilepsy. NDD, neurodevelopmental delay; BA, brain abnormalities; FSE, febrile status epilepticus; AE, autoimmune encephalitis; LPV, likely pathogenic variant; VUS, variant of uncertain significance.</p> "> Figure 2
<p>Pedigrees for families with adolescent-onset epilepsy without neurodevelopmental delay, along with the segregation of identified variants within each family. The black arrow indicates the proband in each family. (<b>a</b>) A family carrying <span class="html-italic">ASH1L</span> variant. (<b>b</b>) A family carrying <span class="html-italic">SETD1A</span> variant. (<b>c</b>) A family carrying 16p13.11 microdeletion. (<b>d</b>) A family carrying 16p13.11. (<b>e</b>) A family carrying <span class="html-italic">SLC12A5</span> variant (<b>f</b>) A family carrying <span class="html-italic">DEPDC5</span> variant. I, first generation; II, second generation.</p> "> Figure 3
<p>Electroencephalogram (EEG) findings in adolescent-onset epilepsy patients without neurodevelopmental delays, carrying genetic alterations. The interictal EEG recordings showed the following: (<b>a</b>,<b>b</b>) Generalized spikes and slow waves in patient n1yj and patient n2wr; (<b>c</b>) a normal background with no epileptiform discharges in patient n3is; (<b>d</b>) paroxysmal generalized sharp waves in patient n4he; (<b>e</b>) normal interictal waves in patient n5sy; (<b>f</b>) high-voltage sharp and wave complexes in the right temporal areas, occasionally spreading more generally, in patient n6sc.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. DNA Extraction, Library Preparation, and Clinical Exome Sequencing
2.3. Bioinformatic and Segregation Analysis
2.4. Statistical Analysis
3. Results
3.1. Presentation of Case Series in Adolescent-Onset Epilepsy Without Neurodevelopmental Delays
3.1.1. Patient n1yj with ASH1L c.3916C>T/p.(Arg1306Ter) Variant
3.1.2. Patient n2wr with SETD1A c.2227T>C/p.(Tyr743His) Variant
3.1.3. Patient n2wr n3is with 16p13.11 Microdeletion
3.1.4. Patient n4he with 16p13.11 Microdeletion
3.1.5. Patient n2wr with SLC12A5 c.2854C>T/p.(Arg952Cys) Variant
3.1.6. Patient n2wr with DEPDC5 c.2684C>G/p.(Ser895Cys) Variant
3.2. Genetic Characterization of Patients with Adolescent-Onset Epilepsy
3.3. Comparison of Adolescent-Onset Epilepsy Based on the Presence of Neurodevelopmental Delay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perucca, P.; Bahlo, M.; Berkovic, S.F. The Genetics of Epilepsy. Annu. Rev. Genom. Hum. Genet. 2020, 21, 205–230. [Google Scholar] [CrossRef]
- Aaberg, K.M.; Gunnes, N.; Bakken, I.J.; Lund Søraas, C.; Berntsen, A.; Magnus, P.; Lossius, M.I.; Stoltenberg, C.; Chin, R.; Surén, P. Incidence and prevalence of childhood epilepsy: A nationwide cohort study. Pediatrics 2017, 139, e20163908. [Google Scholar] [CrossRef] [PubMed]
- Wirrell, E.C.; Nabbout, R.; Scheffer, I.E.; Alsaadi, T.; Bogacz, A.; French, J.A.; Hirsch, E.; Jain, S.; Kaneko, S.; Riney, K.; et al. Methodology for classification and definition of epilepsy syndromes with list of syndromes: Report of the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1333–1348. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Iyer, A. Epilepsy: Addressing the transition from pediatric to adult care. Adolesc. Health Med. Ther. 2016, 7, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Sheth, R.D.; Gidal, B.E. Optimizing epilepsy management in teenagers. J. Child. Neurol. 2006, 21, 273–279. [Google Scholar] [CrossRef]
- Jin Young, S.; Lee, S.A.; Eom, S.; Kim, H.D. Emotional and behavioral profiles of adolescents with epilepsy: Associations with parental perception of epilepsy-related stigma. Epilepsy Behav. 2023, 138, 109014. [Google Scholar] [CrossRef]
- Ferro, M.A.; Speechley, K.N. Depressive symptoms among mothers of children with epilepsy: A review of prevalence, associated factors, and impact on children. Epilepsia 2009, 50, 2344–2354. [Google Scholar] [CrossRef]
- Taylor, R.S.; Sander, J.W.; Taylor, R.J.; Baker, G.A. Predictors of health-related quality of life and costs in adults with epilepsy: A systematic review. Epilepsia 2011, 52, 2168–2180. [Google Scholar] [CrossRef]
- MacLeod, J.S.; Austin, J.K. Stigma in the lives of adolescents with epilepsy: A review of the literature. Epilepsy Behav. 2003, 4, 112–117. [Google Scholar] [CrossRef]
- Reilly, C.; Atkinson, P.; Das, K.B.; Chin, R.F.; Aylett, S.E.; Burch, V.; Gillberg, C.; Scott, R.C.; Neville, B.G. Factors associated with quality of life in active childhood epilepsy: A population-based study. Eur. J. Paediatr. Neurol. 2015, 19, 308–313. [Google Scholar] [CrossRef]
- Camfield, P.; Camfield, C. Transition to adult care for children with chronic neurological disorders. Ann. Neurol. 2011, 69, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Ishida, S. DEPDC5, a new key to understand various epilepsies. Nihon Yakurigaku zasshi. Folia Pharmacol. Jpn. 2018, 152, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, A.; Watanabe, M. Pathogenic potential of human SLC12A5 variants causing KCC2 dysfunction. Brain Res. 2019, 1710, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cordova, I.; Blesson, A.; Savatt, J.M.; Sveden, A.; Mahida, S.; Hazlett, H.; Rooney Riggs, E.; Chopra, M. Expansion of the Genotypic and Phenotypic Spectrum of ASH1L-Related Syndromic Neurodevelopmental Disorder. Genes 2024, 15, 423. [Google Scholar] [CrossRef]
- Colijn, M.A.; Carrion, P.; Poirier-Morency, G.; Rogic, S.; Torres, I.; Menon, M.; Lisonek, M.; Cook, C.; DeGraaf, A.; Thammaiah, S.P. SETD1A variant-associated psychosis: A systematic review of the clinical literature and description of two new cases. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 129, 110888. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Z.J.; Liu, L.; Xu, H.Q.; Shi, Y.W.; Yi, Y.H.; He, N.; Liao, W.P. Epilepsy-associated genes. Seizure 2017, 44, 11–20. [Google Scholar] [CrossRef]
- Singh, A.; Trevick, S. The Epidemiology of Global Epilepsy. Neurol. Clin. 2016, 34, 837–847. [Google Scholar] [CrossRef]
- Modi, A.C.; Rausch, J.R.; Glauser, T.A. Patterns of nonadherence to antiepileptic drug therapy in children with newly diagnosed epilepsy. JAMA 2011, 305, 1669–1676. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Pejaver, V.; Byrne, A.B.; Feng, B.J.; Pagel, K.A.; Mooney, S.D.; Karchin, R.; O’Donnell-Luria, A.; Harrison, S.M.; Tavtigian, S.V.; Greenblatt, M.S.; et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am. J. Hum. Genet. 2022, 109, 2163–2177. [Google Scholar] [CrossRef]
- Cerulli Irelli, E.; Cocchi, E.; Morano, A.; Gesche, J.; Caraballo, R.H.; Lattanzi, S.; Strigaro, G.; Catania, C.; Ferlazzo, E.; Pascarella, A.; et al. Levetiracetam vs Lamotrigine as First-Line Antiseizure Medication in Female Patients With Idiopathic Generalized Epilepsy. JAMA Neurol. 2023, 80, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Cerulli Irelli, E.; Cocchi, E.; Gesche, J.; Peña-Ceballos, J.; Caraballo, R.H.; Lattanzi, S.; Strigaro, G.; Orlando, B.; Moloney, P.B.; Catania, C.; et al. Lamotrigine vs levetiracetam in female patients of childbearing age with juvenile absence epilepsy: A Bayesian reanalysis. Epilepsia 2024, 65, 2897–2908. [Google Scholar] [CrossRef] [PubMed]
- Appleton, R.E.; Chadwick, D.; Sweeney, A. Managing the teenager with epilepsy: Paediatric to adult care. Seizure 1997, 6, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.E.; Myson, V.; Gibbon, F. A teenager epilepsy clinic: Observational study. Eur. J. Neurol. 2002, 9, 373–376. [Google Scholar] [CrossRef]
- Simard-Tremblay, E.; Shevell, M. A profile of adolescent-onset epilepsy. J. Child Neurol. 2009, 24, 1243–1249. [Google Scholar] [CrossRef]
- An, S.; Yeo, K.J.; Jeon, Y.H.; Song, J.J. Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism. J. Biol. Chem. 2011, 286, 8369–8374. [Google Scholar] [CrossRef]
- Hou, P.; Huang, C.; Liu, C.P.; Yang, N.; Yu, T.; Yin, Y.; Zhu, B.; Xu, R.M. Structural Insights into Stimulation of Ash1L’s H3K36 Methyltransferase Activity through Mrg15 Binding. Structure 2019, 27, 837–845.e3. [Google Scholar] [CrossRef] [PubMed]
- Stessman, H.A.; Xiong, B.; Coe, B.P.; Wang, T.; Hoekzema, K.; Fenckova, M.; Kvarnung, M.; Gerdts, J.; Trinh, S.; Cosemans, N. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 2017, 49, 515–526. [Google Scholar] [CrossRef]
- Faundes, V.; Newman, W.G.; Bernardini, L.; Canham, N.; Clayton-Smith, J.; Dallapiccola, B.; Davies, S.J.; Demos, M.K.; Goldman, A.; Gill, H.; et al. Histone Lysine Methylases and Demethylases in the Landscape of Human Developmental Disorders. Am. J. Hum. Genet. 2018, 102, 175–187. [Google Scholar] [CrossRef]
- Liu, H.; Liu, D.T.; Lan, S.; Yang, Y.; Huang, J.; Huang, J.; Fang, L. ASH1L mutation caused seizures and intellectual disability in twin sisters. J. Clin. Neurosci. 2021, 91, 69–74. [Google Scholar] [CrossRef]
- Shen, W.; Krautscheid, P.; Rutz, A.M.; Bayrak-Toydemir, P.; Dugan, S.L. De novo loss-of-function variants of ASH1L are associated with an emergent neurodevelopmental disorder. Eur. J. Med. Genet. 2019, 62, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Cheon, S.H.; Culver, A.M.; Bagnell, A.M.; Ritchie, F.D.; Clytus, J.M.; McCord, M.; Papendorp, C.M.; Chukwurah, E.; Smith, A.J.; Cowen, M.H. ASH1L regulates the structural development of neuronal circuitry by modulating BDNF/TrkB signaling in human neurons. bioRxiv 2020. [Google Scholar] [CrossRef]
- Qin, L.; Williams, J.B.; Tan, T.; Liu, T.; Cao, Q.; Ma, K.; Yan, Z. Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures. Nat. Commun. 2021, 12, 6589. [Google Scholar] [CrossRef]
- Higgs, M.R.; Sato, K.; Reynolds, J.J.; Begum, S.; Bayley, R.; Goula, A.; Vernet, A.; Paquin, K.L.; Skalnik, D.G.; Kobayashi, W. Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2. Mol. Cell 2018, 71, 25–41.e26. [Google Scholar] [CrossRef]
- Carr, S.M.; La Thangue, N.B. Cell cycle control by a methylation-phosphorylation switch. Cell Cycle 2011, 10, 317–327. [Google Scholar] [CrossRef]
- Singh, T.; Kurki, M.I.; Curtis, D.; Purcell, S.M.; Crooks, L.; McRae, J.; Suvisaari, J.; Chheda, H.; Blackwood, D.; Breen, G. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat. Neurosci. 2016, 19, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yang, L.; Li, J.; Li, W.; Li, D.; Wang, R.; Wu, K.; Chen, W.; Zhang, Y.; Qiu, Z. De novo and inherited SETD1A variants in early-onset epilepsy. Neurosci. Bull. 2019, 35, 1045–1057. [Google Scholar] [CrossRef]
- Kummeling, J.; Stremmelaar, D.E.; Raun, N.; Reijnders, M.R.F.; Willemsen, M.H.; Ruiterkamp-Versteeg, M.; Schepens, M.; Man, C.C.O.; Gilissen, C.; Cho, M.T.; et al. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol. Psychiatry 2021, 26, 2013–2024. [Google Scholar] [CrossRef]
- Lan, M.; Wang, Y.; Li, S.; Zhao, L.; Liu, P.; Hu, W. Case report: De novo variant of SETD1A causes infantile epileptic spasms syndrome. Front. Neurol. 2023, 14, 1278035. [Google Scholar] [CrossRef]
- Kahle, K.T.; Khanna, A.R.; Duan, J.; Staley, K.J.; Delpire, E.; Poduri, A. The KCC2 Cotransporter and Human Epilepsy: Getting Excited About Inhibition. Neuroscientist 2016, 22, 555–562. [Google Scholar] [CrossRef]
- Lin, Z.J.; Li, B.; Lin, P.X.; Song, W.; Yan, L.M.; Meng, H.; He, N. Clinical application of trio-based whole-exome sequencing in idiopathic generalized epilepsy. Seizure 2024, 116, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Puskarjov, M.; Seja, P.; Heron, S.E.; Williams, T.C.; Ahmad, F.; Iona, X.; Oliver, K.L.; Grinton, B.E.; Vutskits, L.; Scheffer, I.E.; et al. A variant of KCC2 from patients with febrile seizures impairs neuronal Cl- extrusion and dendritic spine formation. EMBO Rep. 2014, 15, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.A.; Scheffer, I.E. DEPDC5 as a potential therapeutic target for epilepsy. Expert Opin. Ther. Targets 2017, 21, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Baulac, S.; Ishida, S.; Marsan, E.; Miquel, C.; Biraben, A.; Nguyen, D.K.; Nordli, D.; Cossette, P.; Nguyen, S.; Lambrecq, V. Familial focal epilepsy with focal cortical dysplasia due to DEPDC 5 mutations. Ann. Neurol. 2015, 77, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D. DEPDC5-related epilepsy: A comprehensive review. Epilepsy Behav. 2022, 130, 108678. [Google Scholar] [CrossRef]
- Vari, M.S.; Traverso, M.; Bellini, T.; Madia, F.; Pinto, F.; Minetti, C.; Striano, P.; Zara, F. De novo 12q22.q23.3 duplication associated with temporal lobe epilepsy. Seizure 2017, 50, 80–82. [Google Scholar] [CrossRef]
- Lal, D.; Reinthaler, E.M.; Schubert, J.; Muhle, H.; Riesch, E.; Kluger, G.; Jabbari, K.; Kawalia, A.; Bäumel, C.; Holthausen, H. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann. Neurol. 2014, 75, 788–792. [Google Scholar] [CrossRef]
- Picard, F.; Makrythanasis, P.; Navarro, V.; Ishida, S.; de Bellescize, J.; Ville, D.; Weckhuysen, S.; Fosselle, E.; Suls, A.; De Jonghe, P. DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy. Neurology 2014, 82, 2101–2106. [Google Scholar] [CrossRef]
- Ishida, S.; Picard, F.; Rudolf, G.; Noé, E.; Achaz, G.; Thomas, P.; Genton, P.; Mundwiller, E.; Wolff, M.; Marescaux, C. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat. Genet. 2013, 45, 552–555. [Google Scholar] [CrossRef]
- Baldassari, S.; Picard, F.; Verbeek, N.E.; van Kempen, M.; Brilstra, E.H.; Lesca, G.; Conti, V.; Guerrini, R.; Bisulli, F.; Licchetta, L.; et al. The landscape of epilepsy-related GATOR1 variants. Genet. Med. 2019, 21, 398–408. [Google Scholar] [CrossRef]
- Sanders, M.; Lemmens, C.M.C.; Jansen, F.E.; Brilstra, E.H.; Koeleman, B.P.C.; Braun, K.P.J. Implications of genetic diagnostics in epilepsy surgery candidates: A single-center cohort study. Epilepsia Open 2019, 4, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Dibbens, L.M.; de Vries, B.; Donatello, S.; Heron, S.E.; Hodgson, B.L.; Chintawar, S.; Crompton, D.E.; Hughes, J.N.; Bellows, S.T.; Klein, K.M.; et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat. Genet. 2013, 45, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Mullen, S.A.; Carvill, G.L.; Bellows, S.; Bayly, M.A.; Berkovic, S.F.; Dibbens, L.M.; Scheffer, I.E.; Mefford, H.C. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology 2013, 81, 1507–1514. [Google Scholar] [CrossRef]
- Sheidley, B.R.; Malinowski, J.; Bergner, A.L.; Bier, L.; Gloss, D.S.; Mu, W.; Mulhern, M.M.; Partack, E.J.; Poduri, A. Genetic testing for the epilepsies: A systematic review. Epilepsia 2022, 63, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Dibbens, L.M.; Mullen, S.; Helbig, I.; Mefford, H.C.; Bayly, M.A.; Bellows, S.; Leu, C.; Trucks, H.; Obermeier, T.; Wittig, M.; et al. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: Precedent for disorders with complex inheritance. Hum. Mol. Genet. 2009, 18, 3626–3631. [Google Scholar] [CrossRef]
- Helbig, I.; Mefford, H.C.; Sharp, A.J.; Guipponi, M.; Fichera, M.; Franke, A.; Muhle, H.; de Kovel, C.; Baker, C.; von Spiczak, S.; et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat. Genet. 2009, 41, 160–162. [Google Scholar] [CrossRef] [PubMed]
- de Kovel, C.G.; Trucks, H.; Helbig, I.; Mefford, H.C.; Baker, C.; Leu, C.; Kluck, C.; Muhle, H.; von Spiczak, S.; Ostertag, P. Recurrent microdeletions at 15q11. 2 and 16p13. 11 predispose to idiopathic generalized epilepsies. Brain 2010, 133, 23–32. [Google Scholar] [CrossRef]
- The role of copy number variants in the genetic architecture of common familial epilepsies. Epilepsia 2024, 65, 792–804. [CrossRef]
- Heinzen, E.L.; Radtke, R.A.; Urban, T.J.; Cavalleri, G.L.; Depondt, C.; Need, A.C.; Walley, N.M.; Nicoletti, P.; Ge, D.; Catarino, C.B. Rare deletions at 16p13. 11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am. J. Hum. Genet. 2010, 86, 707–718. [Google Scholar] [CrossRef]
- Alkuraya, F.S.; Cai, X.; Emery, C.; Mochida, G.H.; Al-Dosari, M.S.; Felie, J.M.; Hill, R.S.; Barry, B.J.; Partlow, J.N.; Gascon, G.G. Human mutations in NDE1 cause extreme microcephaly with lissencephaly. Am. J. Hum. Genet. 2011, 88, 536–547. [Google Scholar] [CrossRef]
- Tan, L.; Bi, B.; Zhao, P.; Cai, X.; Wan, C.; Shao, J.; He, X. Severe congenital microcephaly with 16p13. 11 microdeletion combined with NDE1 mutation, a case report and literature review. BMC Med. Genet. 2017, 18, 141. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Need, A.C.; Petrovski, S.; Goldstein, D.B. One gene, many neuropsychiatric disorders: Lessons from Mendelian diseases. Nat. Neurosci. 2014, 17, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.; Carvill, G.L.; Gardella, E.; Kluger, G.; Schmiedel, G.; Barisic, N.; Depienne, C.; Brilstra, E.; Mang, Y.; Nielsen, J.E.; et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology 2015, 84, 480–489. [Google Scholar] [CrossRef] [PubMed]
- O’Roak, B.J.; Stessman, H.A.; Boyle, E.A.; Witherspoon, K.T.; Martin, B.; Lee, C.; Vives, L.; Baker, C.; Hiatt, J.B.; Nickerson, D.A.; et al. Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat. Commun. 2014, 5, 5595. [Google Scholar] [CrossRef] [PubMed]
- Amiet, C.; Gourfinkel-An, I.; Bouzamondo, A.; Tordjman, S.; Baulac, M.; Lechat, P.; Mottron, L.; Cohen, D. Epilepsy in autism is associated with intellectual disability and gender: Evidence from a meta-analysis. Biol. Psychiatry 2008, 64, 577–582. [Google Scholar] [CrossRef]
- Montanucci, L.; Lewis-Smith, D.; Collins, R.L.; Niestroj, L.-M.; Parthasarathy, S.; Xian, J.; Ganesan, S.; Macnee, M.; Brünger, T.; Thomas, R.H.; et al. Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals. Nat. Commun. 2023, 14, 4392. [Google Scholar] [CrossRef]
- Salomons, G.S.; van Dooren, S.J.; Verhoeven, N.M.; Cecil, K.M.; Ball, W.S.; Degrauw, T.J.; Jakobs, C. X-linked creatine-transporter gene (SLC6A8) defect: A new creatine-deficiency syndrome. Am. J. Hum. Genet. 2001, 68, 1497–1500. [Google Scholar] [CrossRef]
- Mercimek-Mahmutoglu, S.; Connolly, M.B.; Poskitt, K.J.; Horvath, G.A.; Lowry, N.; Salomons, G.S.; Casey, B.; Sinclair, G.; Davis, C.; Jakobs, C.; et al. Treatment of intractable epilepsy in a female with SLC6A8 deficiency. Mol. Genet. Metab. 2010, 101, 409–412. [Google Scholar] [CrossRef]
- Miyake, N.; Tsurusaki, Y.; Matsumoto, N. Numerous BAF complex genes are mutated in Coffin-Siris syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2014, 166, 257–261. [Google Scholar] [CrossRef]
- Zarate, Y.A.; Bhoj, E.; Kaylor, J.; Li, D.; Tsurusaki, Y.; Miyake, N.; Matsumoto, N.; Phadke, S.; Escobar, L.; Irani, A.; et al. SMARCE1, a rare cause of Coffin-Siris Syndrome: Clinical description of three additional cases. Am. J. Med. Genet. A 2016, 170, 1967–1973. [Google Scholar] [CrossRef]
- Curcio, M.R.; Ferranti, S.; Lotti, F.; Grosso, S. Coffin-Siris syndrome and epilepsy. Neurol. Sci. 2021, 42, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Knowles, J.K.; Helbig, I.; Metcalf, C.S.; Lubbers, L.S.; Isom, L.L.; Demarest, S.; Goldberg, E.M.; George, A.L., Jr.; Lerche, H.; Weckhuysen, S.; et al. Precision medicine for genetic epilepsy on the horizon: Recent advances, present challenges, and suggestions for continued progress. Epilepsia 2022, 63, 2461–2475. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, B.S.; Lehman, J.; Garlick, P.; Amberg, J.; Mishra, P.K.; Dailey, J.W.; Weber, R.; Jobe, P.C. Penetrance and expressivity of genes involved in the development of epilepsy in the genetically epilepsy-prone rat (GEPR). J. Neurogenet. 2001, 15, 233–244. [Google Scholar] [CrossRef]
- Steinlein, O.K.; Mulley, J.C.; Propping, P.; Wallace, R.H.; Phillips, H.A.; Sutherland, G.R.; Scheffer, I.E.; Berkovic, S.F. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 1995, 11, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.H.; Berkovic, S.F. The hidden genetics of epilepsy-a clinically important new paradigm. Nat. Rev. Neurol. 2014, 10, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.A.; Berkovic, S.F.; Petrou, S. Mechanisms of human inherited epilepsies. Prog. Neurobiol. 2009, 87, 41–57. [Google Scholar] [CrossRef]
- Helbig, I.; Lowenstein, D.H. Genetics of the epilepsies: Where are we and where are we going? Curr. Opin. Neurol. 2013, 26, 179–185. [Google Scholar] [CrossRef]
Pt | S/A | Seizure Type | Epilepsy Syndrome | EEG | NDD | Genetic Alteration | OMIM Phenotype | Origin |
---|---|---|---|---|---|---|---|---|
n1yj | F/13 | generalized | EGTCA | pos | neg | NM_018489.3(ASH1L): c.3916C>T/p.(Arg1306Ter) | MRD52 (# 617796) | paternal |
n2wr | F/14 | generalized | EGTCA | pos | neg | NM_014712.3(SETD1A): c.2227T>C/p.(Tyr743His) | EPEO2 (# 618832) | sporadic |
n3is | M/15 | generalized | EGTCA | neg | neg | 16p13.11 microdeletion | n.a. | sporadic |
n4he | F/15 | generalized | EGTCA | pos | neg | 16p13.11 microdeletion | n.a. | maternal |
n5sy | F/14 | generalized | EGTCA | neg | neg | NM_020708.5(SLC12A5): c.2854C>T/p.(Arg952Cys) | EIG14 (# 616685) | maternal |
n6sc | M/14 | focal | FE | pos | neg | NM_001364318.2(DEPDC5): c.2684C>G/p.(Ser895Cys) | FFEVF1 (# 604364) | sporadic |
p1rn | F/14 | focal | FE | pos | pos | 15q11.2q13.1 deletion | PWS (# 176270) | sporadic |
p2hy | F/14 | generalized | EGTCA | pos | pos | NM_005629.4(SLC6A8): c.1222_1224del/p.(Phe408del) | CCDS1 (# 300352) | sporadic |
p3sw | M/18 | focal | FE | pos | pos | 16p11.2 deletion | 16p11.2 deletion (# 611913) | sporadic |
p4yc | M/14 | generalized | EGTCA | pos | pos | 2q37 deletion | 2q37 deletion (# 600430) | sporadic |
p5ny | F/12 | generalized | EGTCA | pos | pos | 12p13.33p13.32 deletion | n.a. | maternal |
p6rw | F/14 | generalized | EGTCA | pos | pos | NM_003079.5(SMARCE1): c.181A>G/p.(Lys61Glu) | CSS5 (# 616938) | sporadic |
p7sj | F/14 | generalized | EGTCA | pos | pos | 16p11.2 duplication | 16p11.2 dup (# 614671) | maternal |
Case | Genetic Alteration | Class (ACMG) | gnomAD * | BayesDel addAF | MuTest | VEST-4 (p Value) | PhyloP | PhCon |
---|---|---|---|---|---|---|---|---|
n1yj | NM_018489.3(ASH1L): c.3916C>T/p.(Arg1306Ter) | LPV (PVS1) | n.f. | Pathogenic Strong | DisCau | 0.83 (0.00173) | 1.422 | 1 |
n2wr | NM_014712.3(SETD1A): c.2227T>C/p.(Tyr743His) | VUS (PM2) | n.f. | Pathogenic Moderate | polym | 0.563 (0.14837) | 1.012 | 0.714 |
n3is | 16p13.11 microdeletion | PV (PVS1) | n.f. | n.a. | n.a. | n.a. | n.a. | n.a. |
n4he | 16p13.11 microdeletion | PV (PVS1) | n.f. | n.a. | n.a. | n.a. | n.a. | n.a. |
n5sy | NM_020708.5(SLC12A5): c.2854C>T/p.(Arg952Cys) | VUS (PM4) | 0.00001193 | Benign Moderate | DisCau | 0.637 (0.10626) | 2.8 | 1 |
n6sc | NM_001364318.2(DEPDC5): c.2684C>G/p.(Ser895Cys) | VUS (PM2) | n.f. | Uncertain | DisCau | 0.622 (0.11355) | 4.389 | 1 |
p1rn | 15q11.2q13.1 deletion | PV (PVS1) | n.f. | n.d. | n.d. | n.d. | n.d. | n.d. |
p2hy | NM_005629.4(SLC6A8): c.1222_1224del/p.(Phe408del) | PV (PVS1) | 0.00004603 | Pathogenic Strong | DisCau | 0.88 (0.00105) | 1.613 | 1 |
p3sw | 16p11.2 deletion | PV (PVS1) | n.f. | n.d. | n.d. | n.d. | n.d. | n.d. |
p4yc | 2q37 deletion | PV (PVS1) | n.f. | n.d. | n.d. | n.d. | n.d. | n.d. |
p5ny | 12p13.33p13.32 deletion | PV (PVS1) | n.f. | n.d. | n.d. | n.d. | n.d. | n.d. |
p6rw | NM_003079.5(SMARCE1): c.181A>G/p.(Lys61Glu) | LPV (PM2) | n.f. | Pathogenic Moderate | DisCau | 0.743 (0.02008) | 5.211 | 1 |
p7sj | 16p11.2 duplication | PV (PVS1) | n.f. | n.d. | n.d. | n.d. | n.d. | n.d. |
Characteristics | 71 AOE (100%) | 51 AOE Without NDD (72%) | 20 AOE with NDD (28%) | p-Value |
---|---|---|---|---|
Male, n | 37 (52%) | 25 (49%) | 12 (60%) | 0.007 |
Median age, years (range) | 14.6 (12–18.9) | 14.4 (12–18.5) | 15.4 (12.1–18.9) | 0.10 |
Seizure type, n | 0.26 | |||
Focal (±generalization) | 17 (24%) | 13 (25%) | 4 (20%) | |
Generalized | 54 (76%) | 38 (75%) | 16 (80%) | |
Epilepsy syndrome, n | 0.44 | |||
Focal epilepsy | 13 (18%) | 9 (18%) | 4 (20%) | |
JAE | 1 (1%) | 1 (2%) | 0 | |
JME | 4 (6%) | 4 (8%) | 0 | |
EGTCA | 53 (75%) | 37 (73%) | 16 (80%) | |
Electroencephalogram, n | 0.31 | |||
Abnormal | 56 (79%) | 41 (80%) | 15 (75%) | |
Normal | 15 (21%) | 10 (20%) | 5 (25%) | |
Antiseizure medications (ASM), n | 0.45 | |||
Monotherapy | 56 (79%) | 41 (80%) | 15 (75%) | |
Duotherapy | 13 (18%) | 8 (16%) | 5 (25%) | |
Three or more | 2 (3%) | 2 (4%) | 0 | |
No. of ASM, mean ± standard deviation | 1.31 | 1.33 ± 0.26 | 1.25 ± 0.19 | 0.27 |
Seizure relapse after ASM discontinuation, n | 16 (23%) | 12 (24%) | 3 (15%) | 0.21 |
Prior febrile seizures, n | 10 (14%) | 8 (16%) | 2 (10%) | 0.27 |
Family history of epilepsy, n | 18 (25%) | 14 (27%) | 4 (20%) | 0.26 |
Mean follow-up period, months (range) | 40 (36–85) | 40 (36–60) | 45 (36–85) | 0.12 |
Yield of genetic tests *, n | 13 (18%) | 6 (12%) | 7 (35%) | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.Y.; Kim, T.Y.; Park, J. Clinical and Genetic Characterization of Adolescent-Onset Epilepsy: A Single-Center Experience in Republic of Korea. Biomedicines 2024, 12, 2663. https://doi.org/10.3390/biomedicines12122663
Han JY, Kim TY, Park J. Clinical and Genetic Characterization of Adolescent-Onset Epilepsy: A Single-Center Experience in Republic of Korea. Biomedicines. 2024; 12(12):2663. https://doi.org/10.3390/biomedicines12122663
Chicago/Turabian StyleHan, Ji Yoon, Tae Yun Kim, and Joonhong Park. 2024. "Clinical and Genetic Characterization of Adolescent-Onset Epilepsy: A Single-Center Experience in Republic of Korea" Biomedicines 12, no. 12: 2663. https://doi.org/10.3390/biomedicines12122663
APA StyleHan, J. Y., Kim, T. Y., & Park, J. (2024). Clinical and Genetic Characterization of Adolescent-Onset Epilepsy: A Single-Center Experience in Republic of Korea. Biomedicines, 12(12), 2663. https://doi.org/10.3390/biomedicines12122663