The HuRaA Trial—The Radiocapitellar Line Shows Significant Posterior Translation in Healthy Elbows: A Prospective Analysis of 53 Healthy Individuals
<p>Three-dimensional reconstruction of an elbow showing the concept of the RCD. The red X represents the center of the capitulum. The blue line shows the axis of the radial neck, which lies exactly on the center of the capitulum.</p> "> Figure 2
<p>RCD measurement in MRI: (<b>a</b>) native MRI of the elbow in the sagittal section; (<b>b</b>) identification of the center of the capitulum; (<b>c</b>) identification of the radial neck axis; (<b>d</b>) drawing the RCL and measurement of the RCD.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Participants
2.3. Inclusion Criteria
- Healthy individuals aged 18 to 45 years.
- No history of elbow injuries or surgeries.
- No clinical indications of elbow instability or pain.
- No musculoskeletal conditions affecting the upper extremities.
- Full range of motion.
2.4. Exclusion Criteria
- Previous trauma or surgery involving the elbow.
- Any history of elbow pain or dysfunction.
- Chronic conditions affecting joint stability or function, such as rheumatoid arthritis or other inflammatory disorders.
2.5. MRI Examination
2.6. Radiocapitellar Line Assessment
- The identification of anatomical landmarks was carried out as follows:
- ○
- The center of the capitellum was located at the most prominent point of the capitellar surface (Figure 2b).
- ○
- The center of the radial head was identified as the midpoint of the radial head’s surface (Figure 2c).
- ○
- The center of the radial neck was determined at the level of the supinator muscle (Figure 2c).
- ○
- To validate the correct position, the corresponding locations were checked using a split screen and an orientation line in the transverse and coronal sections.
- Drawing the RCL (yellow line) was carried out as follows:
- ○
- A straight line was drawn connecting the center of the radial neck and the radial head to the center of the capitellum on the sagittal plane (Figure 2d).
- Deviation measurements (red arrows) were determined as follows:
- ○
- The distance from the capitellar center to the RCL was measured perpendicularly (Figure 2d).
- ○
- Measurements were recorded in millimeters.
- The thresholds for interpretation are outlined below:
- ○
- A deviation of greater than 1.2 mm was considered suspicious for PLRI.
- ○
- A deviation greater than 3.4 mm was regarded as confirming the diagnosis of elbow instability.
2.7. Statistical Analysis
3. Results
3.1. Demography
3.2. Radiocapitellar Deviations
3.3. Gender Differences
3.4. Correlation of Range of Motion (ROM) and RCD
3.5. Age Correlation
3.6. Interobserver Reliability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alcid, J.G.; Ahmad, C.S.; Lee, T.Q. Elbow anatomy and structural biomechanics. Clin. Sports Med. 2004, 23, 503–517. [Google Scholar] [CrossRef] [PubMed]
- Karbach, L.E.; Elfar, J. Elbow Instability: Anatomy, Biomechanics, Diagnostic Maneuvers, and Testing. J. Hand Surg. 2017, 42, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Bryce, C.D.; Armstrong, A.D. Anatomy and Biomechanics of the Elbow. Orthop. Clin. N. Am. 2008, 39, 141–154. [Google Scholar] [CrossRef]
- Singh, J.; Elvey, M.H.; Hamoodi, Z.; Watts, A.C. Current perspectives on elbow dislocation and instability. Ann. Jt. 2020, 6, 10. [Google Scholar] [CrossRef]
- Safran, M.R.; Baillargeon, D. Soft-tissue stabilizers of the elbow. J. Shoulder Elb. Surg. 2005, 14, S179–S185. [Google Scholar] [CrossRef]
- O’Driscoll, S.W.; Bell, D.F.; Morrey, B.F. Posterolateral rotatory instability of the elbow. J. Bone Jt. Surg. 1991, 73, 440–446. [Google Scholar] [CrossRef]
- Mica, M.C.; Caekebeke, P.; van Riet, R. Lateral collateral ligament injuries of the elbow—Chronic posterolateral rotatory instability (PLRI). EFORT Open Rev. 2016, 1, 461–468. [Google Scholar] [CrossRef]
- Fedorka, C.J.; Oh, L.S. Posterolateral rotatory instability of the elbow. Curr. Rev. Musculoskelet. Med. 2016, 9, 240–246. [Google Scholar] [CrossRef]
- Camp, C.L.; Smith, J.; O’Driscoll, S.W. Posterolateral Rotatory Instability of the Elbow: Part II. Supplementary Examination and Dynamic Imaging Techniques. Arthrosc. Tech. 2017, 6, e407–e411. [Google Scholar] [CrossRef]
- Wörner, E.; Safran, M.R. Surgical treatment of posterolateral rotatory instability of the elbow. In Surgical Techniques of the Shoulder, Elbow, and Knee in Sports Medicine, 3rd ed.; Cole, B.J., Chahla, J., Gilat, R., Eds.; Elsevier: Philadelphia, PA, USA, 2022; pp. 454–462. [Google Scholar]
- Streubel, P.N.; Cohen, M.S. Posterolateral Rotatory Instability of the Elbow: Diagnosis and Surgical Treatment. Oper. Tech. Sports Med. 2014, 22, 190–197. [Google Scholar] [CrossRef]
- Souder, C.D.; Roocroft, J.H.; Edmonds, E.W. Significance of the Lateral Humeral Line for Evaluating Radiocapitellar Alignment in Children. J. Pediatr. Orthop. 2017, 37, e150–e155. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, S.T.; Lee, K.H.; Ahn, J.M.; Gong, H.S. Radiocapitellar incongruity of the radial head in magnetic resonance imaging correlates with pathologic changes of the lateral elbow stabilizers in lateral epicondylitis. PLoS ONE 2021, 16, e0254037. [Google Scholar] [CrossRef] [PubMed]
- Schnetzke, M.; Ellwein, A.; Maier, D.; Wagner, F.C.; Grützner, P.A.; Guehring, T. Injury patterns following simple elbow dislocation: Radiological analysis implies existence of a pure valgus dislocation mechanism. Arch. Orthop. Trauma Surg. 2021, 141, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Hackl, M.; Wegmann, K.; Ries, C.; Leschinger, T.; Burkhart, K.J.; Müller, L.P. Reliability of Magnetic Resonance Imaging Signs of Posterolateral Rotatory Instability of the Elbow. J. Hand Surg. 2015, 40, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Rouleau, D.M.; Sandman, E.; Canet, F.; Djahangiri, A.; Laflamme, Y.; Athwal, G.S.; Petit, Y. Radial head translation measurement in healthy individuals: The radiocapitellar ratio. J. Shoulder Elb. Surg. 2012, 21, 574–579. [Google Scholar] [CrossRef]
- Kunkel, S.; Cornwall, R.; Little, K.; Jain, V.; Mehlman, C.; Tamai, J. Limitations of the Radiocapitellar Line for Assessment of Pediatric Elbow Radiographs. J. Pediatr. Orthop. 2011, 31, 628–632. [Google Scholar] [CrossRef]
- Ramirez, R.N.; Ryan, D.D.; Williams, J.; Wren, T.A.; Ibrahim, D.; Weiss, J.M.; Kay, R.M.; Lightdale-Miric, N.; Skaggs, D.L. A Line Drawn Along the Radial Shaft Misses the Capitellum in 16% of Radiographs of Normal Elbows. J. Pediatr. Orthop. 2014, 34, 763–767. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Taylor & Francis: Oxfordshire, UK, 2013. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing; Elsevier Science: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Gilotra, M.N.; Fridman, J.; Enobun, B.; Kuntz, A.F.; Glaser, D.L.; Huffman, G.R. Risk factors associated with atraumatic posterolateral rotatory instability. JSES Int. 2021, 5, 827–833. [Google Scholar] [CrossRef]
- Tan, D.J.; Tan, T.W.X.; Tay, G.M.L.H.; Lee, N.K.L.; Chew, E.M.; Mahadev, A.; Wong, K.P.L. Using the radiocoronoid line for diagnosis of elbow dislocation. J. Pediatr. Orthop. B 2022, 31, 442–448. [Google Scholar] [CrossRef]
- Bašković, M.; Gregov, A. Comprehensive Analysis of Pediatric Elbow Radiographic Lines and Angles. J. Orthop. Trauma 2024, 38, e55–e62. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Li, L.; Mu, M. Treatment of missed Monteggia fracture with intact annular ligament after an interval of 9 years: A case report and literature review. J. Int. Med. Res. 2020, 48, 300060520949079. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ben, H.; Kwak, J.M.; Zeng, C.H.; Koh, K.H.; Jeon, I.H. Anterior radial head subluxation in primary elbow osteoarthritis. Int. Orthop. 2023, 48, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Goldin, A.N.; Dwight, K.D.; Hentzen, E.R.; Leek, B.T.; Hughes-Austin, J.M.; Ward, S.R.; Abrams, R.A. A Simple and Versatile Test for Elbow Posterolateral Rotatory Instability. Hand 2023. ahead of print. [Google Scholar]
- Tashjian, R.Z.; Wolf, B.R.; Van Riet, R.P.; Steinmann, S.P. The Unstable Elbow: Current Concepts in Diagnosis and Treatment. Instr. Course Lect. 2016, 65, 55–82. [Google Scholar]
- Tarassoli, P.; McCann, P.; Amirfeyz, R. Complex instability of the elbow. Injury 2017, 48, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, A.; Graves, B.R.; Bain, G.I.; Pederzini, L. Treatment of elbow instability: State of the art. J. ISAKOS 2021, 6, 102–115. [Google Scholar] [CrossRef]
N | Percentage | Mean | SD | |
---|---|---|---|---|
Sex | ||||
Male | 26 | 49.1 | ||
Female | 27 | 50.9 | ||
Side | ||||
Left | 26 | 49.1 | ||
Right | 27 | 50.9 | ||
Age | 34 | 10.65 | ||
Range of Motion | ||||
Flexion | 145 | 6.61 | ||
Extension | 6 | 4.74 |
N (Elbows) | RCD (mm) | SD | |
---|---|---|---|
Sex | |||
Male | 26 | 1.88 | 1.23 |
Female | 27 | 1.67 | 0.88 |
Side | |||
Left | 26 | 1.96 | 1.09 |
Right | 27 | 1.59 | 1.01 |
Mean | 1.77 | 1.06 |
N (RCD ≥ 1.2 mm) | Percentage | N (RCD ≥ 3.4 mm) | Percentage | |
---|---|---|---|---|
Sex | ||||
Male | 18 | 43 | 4 | 8 |
Female | 16 | 30 | 1 | 2 |
Total | 34 | 64 | 5 | 9 |
Side | ||||
Left | 15 | 28 | 2 | 4 |
Right | 19 | 36 | 3 | 6 |
Total | 34 | 64 | 5 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schamberger, C.T.; Grossner, T.; Rehnitz, C.; Findeisen, S.; Ferbert, T.; Suda, A.J.; Schmidmaier, G.; Stein, S. The HuRaA Trial—The Radiocapitellar Line Shows Significant Posterior Translation in Healthy Elbows: A Prospective Analysis of 53 Healthy Individuals. Biomedicines 2024, 12, 2660. https://doi.org/10.3390/biomedicines12122660
Schamberger CT, Grossner T, Rehnitz C, Findeisen S, Ferbert T, Suda AJ, Schmidmaier G, Stein S. The HuRaA Trial—The Radiocapitellar Line Shows Significant Posterior Translation in Healthy Elbows: A Prospective Analysis of 53 Healthy Individuals. Biomedicines. 2024; 12(12):2660. https://doi.org/10.3390/biomedicines12122660
Chicago/Turabian StyleSchamberger, Christian T., Tobias Grossner, Christoph Rehnitz, Sebastian Findeisen, Thomas Ferbert, Arnold J. Suda, Gerhard Schmidmaier, and Stephan Stein. 2024. "The HuRaA Trial—The Radiocapitellar Line Shows Significant Posterior Translation in Healthy Elbows: A Prospective Analysis of 53 Healthy Individuals" Biomedicines 12, no. 12: 2660. https://doi.org/10.3390/biomedicines12122660
APA StyleSchamberger, C. T., Grossner, T., Rehnitz, C., Findeisen, S., Ferbert, T., Suda, A. J., Schmidmaier, G., & Stein, S. (2024). The HuRaA Trial—The Radiocapitellar Line Shows Significant Posterior Translation in Healthy Elbows: A Prospective Analysis of 53 Healthy Individuals. Biomedicines, 12(12), 2660. https://doi.org/10.3390/biomedicines12122660