Chronic Sleep Deprivation Causes Anxiety, Depression and Impaired Gut Barrier in Female Mice—Correlation Analysis from Fecal Microbiome and Metabolome
<p>SD procedure and behavior test. (<b>A</b>) Schematic design of 48-d SD procedure and behavior test. (<b>B</b>) Diagram of the MMPM. (<b>C</b>) Representative tracking plot from the OFT. (<b>D</b>–<b>F</b>) Total distance (unpaired <span class="html-italic">t</span>-test, <span class="html-italic">n</span> = 4/5 per group), central square duration (unpaired <span class="html-italic">t</span>-test, <span class="html-italic">n</span> = 4 per group), and the number of entries in the center (unpaired <span class="html-italic">t</span>-test, <span class="html-italic">n</span> = 5 per group) during the OFT. (<b>G</b>) Representative track plot of the EPM test. (<b>H</b>–<b>J</b>) Time spent in the open arms (unpaired <span class="html-italic">t</span>-test), the number of entries in the open arms (unpaired <span class="html-italic">t</span>-test), and the anxiety index during the EPM test (unpaired <span class="html-italic">t</span>-test, <span class="html-italic">n</span> = 5 per group). (<b>K</b>) Diagram of the NORT. The green polyhedron represents familiar object, the red cube represents the novel object. (<b>L</b>) Recognition index of NORT (unpaired <span class="html-italic">t</span>-test, <span class="html-italic">n</span> = 4 per group). (<b>M</b>) Diagram of the FST. (<b>N</b>) Immobility time during FST (unpaired <span class="html-italic">t</span>-test, <span class="html-italic">n</span> = 5 per group). (<b>O</b>) Diagram of the TST. (<b>P</b>) Immobility time during TST (unpaired <span class="html-italic">t</span>-test, <span class="html-italic">n</span> = 5 per group). All data are presented as mean ± SEM. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 2
<p>Colon pathological analysis. (<b>A</b>) Hematoxylin and eosin (H&E) staining. Bar = 300 μm and 60 μm. (<b>B</b>) Scores of histological changes in H&E staining (<span class="html-italic">n</span> = 3). (<b>C</b>) Alcian Blue Periodic Acid Schiff (AB-PAS) Staining. Bar = 300 μm and 200 μm. (<b>D</b>) Goblet cell counting of AB-PAS staining (<span class="html-italic">n</span> = 3). All data are presented as mean ± SEM. ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 3
<p>Fecal microbiome data analysis after SD. (<b>A</b>) Venn diagram. (<b>B</b>,<b>C</b>) In representative diagrams of alpha diversity, all alpha diversity indicators have no statistically significant differences. (<b>D</b>) Principal coordinates analysis (PcoA) plot using Bray–Curtis distance. (<b>E</b>) The ratio of relative abundances of phylum level. (<b>F</b>) The ratio of relative abundances of family level. (<b>G</b>) The ratio of relative abundances of genus level. (<b>H</b>) The top 10 species with a <span class="html-italic">p</span>-value less than 0.05 at the phylum level. (<b>I</b>) The top 10 species with a <span class="html-italic">p</span>-value less than 0.05 at the family level. (<b>J</b>) The top 10 species with a <span class="html-italic">p</span>-value less than 0.05 at the genus level.</p> "> Figure 4
<p>Fecal metabolomics after SD. (<b>A</b>) Score plot of PLS-DA model in positive ion model. (<b>B</b>) Permutation plot in positive ion model. (<b>C</b>) Heatmap graph of differential metabolites in positive ion model, the metabolites are clustered according to the similarity of the metabolite expression profiles. (<b>D</b>) Volcano plot in positive ion model, showing the distribution of differential metabolites. (<b>E</b>–<b>H</b>) Score plot of PLS-DA, permutation plot, heatmap graph, and volcano plot in negative ion model. (<b>I</b>) Differential metabolite statistics. (<b>J</b>,<b>K</b>) KEGG enrichment analysis of differential metabolites in positive ion model and negative ion model.</p> "> Figure 5
<p>Correlation analysis between differential genera, metabolites, and behavioral indicators. (<b>A</b>,<b>B</b>) Correlation heatmap and correlation network between the top 10 genera with <span class="html-italic">p</span>-values less than 0.05 and metabolites in glycerophospholipid metabolism pathway and glutathione metabolism. (<b>C</b>) Correlation heatmap between the top 10 genera with <span class="html-italic">p</span>-values less than 0.05 and behavioral indicators. (<b>D</b>) Correlation heatmap between metabolites in glycerophospholipid metabolism pathway and glutathione metabolism and behavioral indicators. All data are presented as mean ± SEM. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sleep Deprivation Procedure
2.3. Behavior Tests
2.3.1. Open Field Test (OFT)
2.3.2. Elevated Plus Maze (EPM)
2.3.3. Novel Object Recognition Test (NORT)
2.3.4. Forced Swim Test (FST)
2.3.5. Tail Suspension Test
2.4. Histopathological Observation
2.5. Fecal Sample Collection
2.6. Fecal 16S rDNA Sequencing
2.7. Untargeted Metabolomic Analysis
2.8. Statistical Analysis
3. Result
3.1. SD Induced Anxiety/Depressive-like Behavior in Mice
3.2. SD Disrupts the Gut Barrier
3.3. Sleep Deprivation Changed the Composition of the Gut Microbiota
3.4. SD Changed the Fecal Metabolome
3.5. Correlations Between Differential Bacterial Taxa, Fecal Metabolites, and Behaviors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Konakanchi, S.; Raavi, V.; Ml, H.K.; Shankar, M.S.V. Effect of chronic sleep deprivation and sleep recovery on hippocampal CA3 neurons, spatial memory and anxiety-like behavior in rats. Neurobiol. Learn. Mem. 2022, 187, 107559. [Google Scholar] [CrossRef] [PubMed]
- Hanson, J.A.; Huecker, M.R. Sleep Deprivation. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK547676/ (accessed on 30 October 2023).
- 2020_philips_wsd_report.pdf. Available online: https://www.philips.com/c-dam/b2c/zh_CN/experience/world-sleep-day/2020_philips_wsd_report_final-version.pdf?_ga=2.139526961.38876783.1701744132-171694191.1686562851 (accessed on 5 December 2023).
- Han, M.; Yuan, S.; Zhang, J. The interplay between sleep and gut microbiota. Brain Res. Bull. 2022, 180, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, W.-H.; Li, S.-X.; He, Z.-M.; Zhu, W.-L.; Ji, Y.-B.; Wang, Z.; Zhu, X.-M.; Yuan, K.; Bao, Y.-P.; et al. Gut microbiota modulates the inflammatory response and cognitive impairment induced by sleep deprivation. Mol. Psychiatry 2021, 26, 6277–6292. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Wang, Z.; Dong, Y.; Cao, J.; Lin, R.; Wang, X.; Yu, Z.; Chen, Y. Role of melatonin in sleep deprivation-induced intestinal barrier dysfunction in mice. J. Pineal Res. 2019, 67, e12574. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Wei, Y.; Hashimoto, K. Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res. Bull. 2022, 182, 44–56. [Google Scholar] [CrossRef]
- Agirman, G.; Yu, K.B.; Hsiao, E.Y. Signaling inflammation across the gut-brain axis. Science 2021, 374, 1087–1092. [Google Scholar] [CrossRef]
- Porter, G.A.; O’Connor, J.C. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J. Psychiatry 2022, 12, 77–97. [Google Scholar] [CrossRef]
- Conklin, A.I.; Yao, C.A.; Richardson, C.G. Chronic sleep deprivation and gender-specific risk of depression in adolescents: A prospective population-based study. BMC Public Health 2018, 18, 724. [Google Scholar] [CrossRef]
- Goldstein-Piekarski, A.N.; Greer, S.M.; Saletin, J.M.; Harvey, A.G.; Williams, L.M.; Walker, M.P. Sex, Sleep Deprivation, and the Anxious Brain. J. Cogn. Neurosci. 2018, 30, 565–578. [Google Scholar] [CrossRef]
- Birchler-Pedross, A.; Schröder, C.M.; Münch, M.; Knoblauch, V.; Blatter, K.; Schnitzler-Sack, C.; Wirz-Justice, A.; Cajochen, C. Subjective Well-Being Is Modulated by Circadian Phase, Sleep Pressure, Age, and Gender. J. Biol. Rhythm. 2009, 24, 232–242. [Google Scholar] [CrossRef]
- Gonzalez-Castañeda, R.E.; Galvez-Contreras, A.Y.; Martínez-Quezada, C.J.; Jauregui-Huerta, F.; Grcia-Estrada, J.; Ramos-Zuñiga, R.; Luquin, S.; Gonzalez-Perez, O. Sex-related effects of sleep deprivation on depressive- and anxiety-like behaviors in mice. Exp. Anim. 2016, 65, 97–107. [Google Scholar] [CrossRef]
- van der Helm, E.; Gujar, N.; Walker, M.P. Sleep Deprivation Impairs the Accurate Recognition of Human Emotions. Sleep 2010, 33, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Mielke, M.M.; Miller, V.M. Improving clinical outcomes through attention to sex and hormones in research. Nat. Rev. Endocrinol. 2021, 17, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, X.; Li, Y.; Xi, K.; Han, Y.; Mao, H.; Ren, K.; Wang, W.; Wu, Z. TNF signaling pathway-mediated microglial activation in the PFC underlies acute paradoxical sleep deprivation-induced anxiety-like behaviors in mice. Brain Behav. Immun. 2022, 100, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Gao, W.; Zhou, K.; Liu, X.; Jiang, W.; Xue, R.; Wu, W. Role of IGF-1 in neuroinflammation and cognition deficits induced by sleep deprivation. Neurosci. Lett. 2022, 776, 136575. [Google Scholar] [CrossRef]
- Yang, D.F.; Huang, W.C.; Wu, C.W.; Huang, C.Y.; Yang, Y.C.S.H.; Tung, Y.T. Acute sleep deprivation exacerbates systemic inflammation and psychiatry disorders through gut microbiota dysbiosis and disruption of circadian rhythms. Microbiol. Res. 2023, 268, 127292. [Google Scholar] [CrossRef]
- Tarlan, M.; Sajedianfard, J.; Fathi, M. Effect of titanium dioxide nanoparticles administered during pregnancy on depression-like behavior in forced swimming and tail suspension tests in offspring mice. Toxicol. Ind. Health 2020, 36, 297–304. [Google Scholar] [CrossRef]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal human tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef]
- Erben, U.; Loddenkemper, C.; Doerfel, K.; Spieckermann, S.; Haller, D.; Heimesaat, M.M.; Zeitz, M.; Siegmund, B.; Kühl, A.A. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int. J. Clin. Exp. Pathol. 2014, 7, 4557–4576. [Google Scholar]
- Chaput, J.P.; McHill, A.W.; Cox, R.C.; Broussard, J.L.; Dutil, C.; da Costa, B.G.G.; Sampasa-Kanyinga, H.; Wright, K.P., Jr. The role of insufficient sleep and circadian misalignment in obesity. Nat. Rev. Endocrinol. 2023, 19, 82–97. [Google Scholar] [CrossRef]
- Cabrera-Domínguez, G.; de la Calle, M.; Herranz Carrillo, G.; Ruvira, S.; Rodríguez-Rodríguez, P.; Arribas, S.M.; Ramiro-Cortijo, D. Women during Lactation Reduce Their Physical Activity and Sleep Duration Compared to Pregnancy. Int. J. Environ. Res. Public Health 2022, 19, 11199. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Song, J.; Wang, H.; Shi, F.; Zhou, N.; Jiang, J.; Xu, Y.; Zhang, L.; Yang, L.; Zhou, M. Chronic paradoxical sleep deprivation-induced depression like behavior, energy metabolism and microbial changes in rats. Life Sci. 2019, 225, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Pires, G.N.; Bezerra, A.G.; Tufik, S.; Andersen, M.L. Effects of experimental sleep deprivation on anxiety-like behavior in animal research: Systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2016, 68, 575–589. [Google Scholar] [CrossRef] [PubMed]
- Moran, T.P. Anxiety and working memory capacity: A meta-analysis and narrative review. Psychol. Bull. 2016, 142, 831–864. [Google Scholar] [CrossRef]
- Margolis, K.G.; Cryan, J.F.; Mayer, E.A. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021, 160, 1486. [Google Scholar] [CrossRef]
- Mayorgas, A.; Dotti, I.; Salas, A. Microbial Metabolites, Postbiotics, and Intestinal Epithelial Function. Mol. Nutr. Food Res. 2021, 65, 2000188. [Google Scholar] [CrossRef]
- Bowers, S.J.; Vargas, F.; González, A.; He, S.; Jiang, P.; Dorrestein, P.C.; Knight, R.; Wright, K.P., Jr.; Lowry, C.A.; Fleshner, M.; et al. Repeated sleep disruption in mice leads to persistent shifts in the fecal microbiome and metabolome. Loor JJ, editor. PLoS ONE 2020, 15, e0229001. [Google Scholar] [CrossRef]
- Zhu, J.P.; Wu, H.Y.; Zi, Y.; Xia, X.B.; Xie, M.Z.; Yuan, Z.Y. Baihe Jizihuang Tang Ameliorates Chronic Unpredictable Mild Stress-Induced Depression-Like Behavior: Integrating Network Pharmacology and Brain-Gut Axis Evaluation. Evid. Based Complement. Alternat. Med. 2021, 2021, 5554363. [Google Scholar] [CrossRef]
- Tan, J.; Li, X.; Zhu, Y.; Sullivan, M.A.; Deng, B.; Zhai, X.; Lu, Y. Antidepressant Shugan Jieyu Capsule Alters Gut Microbiota and Intestinal Microbiome Function in Rats with Chronic Unpredictable Mild Stress-Induced Depression. Front. Pharmacol. 2022, 13, 828595. [Google Scholar] [CrossRef]
- Bangsgaard Bendtsen, K.M.; Krych, L.; Sørensen, D.B.; Pang, W.; Nielsen, D.S.; Josefsen, K.; Hansen, S.; Sørensen, S.J.; Hansen, A.K. Gut Microbiota Composition Is Correlated to Grid Floor Induced Stress and Behavior in the BALB/c Mouse. PLoS ONE 2012, 7, e46231. [Google Scholar] [CrossRef]
- Meng, X.C.; Wang, Y.N.; Yan, P.G.; Li, Y.H.; Wang, H.Y.; Qian, J.M.; Li, J.N. Effect of VSL#3 and S. Boulardii on intestinal microbiota in mice with acute colitis. Natl. J. China 2019, 99, 1735–1742. [Google Scholar]
- Lin, P.; Ding, B.; Feng, C.; Yin, S.; Zhang, T.; Qi, X.; Lv, H.; Guo, X.; Dong, K.; Zhu, Y.; et al. Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J. Affect. Disord. 2017, 207, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Gao, M.; Liu, Z.; Zhang, Y.; Tu, H.; Lei, L.; Wu, P.; Zhang, A.; Yang, C.; Li, G.; et al. Gut Microbiome Composition Linked to Inflammatory Factors and Cognitive Functions in First-Episode, Drug-Naive Major Depressive Disorder Patients. Front. Neurosci. 2022, 15, 800764. [Google Scholar] [CrossRef] [PubMed]
- Fatahi-Bafghi, M. Characterization of the Rothia spp. and their role in human clinical infections. Infect. Genet. Evol. 2021, 93, 104877. [Google Scholar] [CrossRef]
- Ruan, X.L.; Qin, X.; Li, M. Nosocomial bloodstream infection pathogen Pantoea dispersa: A case report and literature review. J. Hosp. Infect. 2022, 127, 77–82. [Google Scholar] [CrossRef]
- Berlec, A.; Perše, M.; Ravnikar, M.; Lunder, M.; Erman, A.; Cerar, A.; Štrukelj, B. Dextran sulphate sodium colitis in C57BL/6J mice is alleviated by Lactococcus lactis and worsened by the neutralization of Tumor necrosis Factor α. Int. Immunopharmacol. 2017, 43, 219–226. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Wang, H.; Ma, Y.; Zhao, X.; Zhang, X.; Yang, H.; Qian, J.; Li, J. Saccharomyces boulardii alleviates ulcerative colitis carcinogenesis in mice by reducing TNF-α and IL-6 levels and functions and by rebalancing intestinal microbiota. BMC Microbiol. 2019, 19, 246. [Google Scholar] [CrossRef]
- Gao, K.; Farzi, A.; Ke, X.; Yu, Y.; Chen, C.; Chen, S.; Yu, T.; Wang, H.; Li, Y. Oral administration of Lactococcus lactis WHH2078 alleviates depressive and anxiety symptoms in mice with induced chronic stress. Food Funct. 2022, 13, 957–969. [Google Scholar] [CrossRef]
- Ramalho, J.B.; Spiazzi, C.C.; Bicca, D.F.; Rodrigues, J.F.; Sehn, C.P.; da Silva, W.P.; Cibin, F.W.S. Beneficial effects of Lactococcus lactis subsp. cremoris LL95 treatment in an LPS-induced depression-like model in mice. Behav. Brain Res. 2022, 426, 113847. [Google Scholar] [CrossRef]
- Liang, J.; Sha, S.M.; Wu, K.C. Role of the intestinal microbiota and fecal transplantation in inflammatory bowel diseases. J. Dig. Dis. 2014, 15, 641–646. [Google Scholar] [CrossRef]
- Zhang, L.; Yue, Y.; Shi, M.; Tian, M.; Ji, J.; Liao, X.; Hu, X.; Chen, F. Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice. Food Chem. 2020, 320, 126648. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Lordan, C.; Ross, R.P.; Cotter, P.D. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020, 12, 1802866. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Kuang, X.; Yan, H.; Ren, P.; Yang, X.; Liu, H.; Liu, Q.; Yang, H.; Kang, X.; Shen, X.; et al. A Novel Synbiotic Alleviates Autoimmune Hepatitis by Modulating the Gut Microbiota-Liver Axis and Inhibiting the Hepatic TLR4/NF-κB/NLRP3 Signaling Pathway. mSystems 2023, 8, e01127-22. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Brejnrod, A.D.; Ernst, M.; Rykær, M.; Herschend, J.; Olsen, N.M.C.; Dorrestein, P.C.; Rensing, C.; Sørensen, S.J. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. Environ. Int. 2019, 126, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tan, K.S.; Beng, H.; Liu, F.; Huang, J.; Kuai, Y.; Zhang, R.; Tan, W. Protective effect of isosteviol sodium against LPS-induced multiple organ injury by regulating of glycerophospholipid metabolism and reducing macrophage-driven inflammation. Pharmacol. Res. 2021, 172, 105781. [Google Scholar] [CrossRef]
- Kim, M.; Yoo, H.J.; Ko, J.; Lee, J.H. Metabolically unhealthy overweight individuals have high lysophosphatide levels, phospholipase activity, and oxidative stress. Clin. Nutr. 2020, 39, 1137–1145. [Google Scholar] [CrossRef]
- Shenghua, P.; Ziqin, Z.; Shuyu, T.; Huixia, Z.; Xianglu, R.; Jiao, G. An integrated fecal microbiome and metabolome in the aged mice reveal anti-aging effects from the intestines and biochemical mechanism of FuFang zhenshu TiaoZhi (FTZ). Biomed. Pharmacother. 2020, 121, 109421. [Google Scholar] [CrossRef]
- Tang, X.; Wang, W.; Hong, G.; Duan, C.; Zhu, S.; Tian, Y.; Han, C.; Qian, W.; Lin, R.; Hou, X. Gut microbiota-mediated lysophosphatidylcholine generation promotes colitis in intestinal epithelium-specific Fut2 deficiency. J. Biomed. Sci. 2021, 28, 20. [Google Scholar] [CrossRef]
- Gong, X.; Huang, C.; Yang, X.; Chen, J.; Pu, J.; He, Y.; Xie, P. Altered Fecal Metabolites and Colonic Glycerophospholipids Were Associated with Abnormal Composition of Gut Microbiota in a Depression Model of Mice. Front. Neurosci. 2021, 15, 701355. [Google Scholar] [CrossRef]
- Zheng, P.; Wu, J.; Zhang, H.; Perry, S.W.; Yin, B.; Tan, X.; Chai, T.; Liang, W.; Huang, Y.; Li, Y.; et al. The gut microbiome modulates gut–brain axis glycerophospholipid metabolism in a region-specific manner in a nonhuman primate model of depression. Mol. Psychiatry 2021, 26, 2380–2392. [Google Scholar] [CrossRef]
- Pederzolli, C.D.; Mescka, C.P.; Zandoná, B.R.; De Moura Coelho, D.; Sgaravatti, Â.M.; Sgarbi, M.B.; de Souza Wyse, A.T.; Wannmacher, C.M.D.; Wajner, M.; Vargas, C.R.; et al. Acute administration of 5-oxoproline induces oxidative damage to lipids and proteins and impairs antioxidant defenses in cerebral cortex and cerebellum of young rats. Metab. Brain Dis. 2010, 25, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Bachhawat, A.K.; Yadav, S. The glutathione cycle: Glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life 2018, 70, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Van Der Pol, A.; Gil, A.; Tromp, J.; Silljé, H.H.W.; Van Veldhuisen, D.J.; Voors, A.A.; Hoendermis, E.S.; Beverborg, N.G.; Schouten, E.-M.; de Boer, R.A.; et al. OPLAH ablation leads to accumulation of 5-oxoproline, oxidative stress, fibrosis, and elevated fillings pressures: A murine model for heart failure with a preserved ejection fraction. Cardiovasc. Res. 2018, 114, 1871–1882. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, K.; Choi, J.N.; Kim, J.; Lee, S.Y.; Lee, C.H. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J. Med. Microbiol. 2011, 60, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Vascellari, S.; Palmas, V.; Melis, M.; Pisanu, S.; Cusano, R.; Uva, P.; Perra, D.; Madau, V.; Sarchioto, M.; Oppo, V.; et al. Gut Microbiota and Metabolome Alterations Associated with Parkinson’s Disease. mSystems 2020, 5, e00561-20. [Google Scholar] [CrossRef]
- Fritsch, S.D.; Sukhbaatar, N.; Gonzales, K.; Sahu, A.; Tran, L.; Vogel, A.; Mazic, M.; Wilson, J.L.; Forisch, S.; Mayr, H.; et al. Metabolic support by macrophages sustains colonic epithelial homeostasis. Cell Metab. 2023, 35, 1931–1943.e8. [Google Scholar] [CrossRef]
- Ma, L.; Ni, Y.; Wang, Z.; Tu, W.; Ni, L.; Zhuge, F.; Zheng, A.; Hu, L.; Zhao, Y.; Zheng, L.; et al. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes 2020, 12, 1832857. [Google Scholar] [CrossRef]
- Madeo, F.; Eisenberg, T.; Pietrocola, F.; Kroemer, G. Spermidine in health and disease. Science 2018, 359, eaan2788. [Google Scholar] [CrossRef]
- Mayer, E.A. Gut feelings: The emerging biology of gut–brain communication. Nat. Rev. Neurosci. 2011, 12, 453–466. [Google Scholar] [CrossRef]
No. | Ion Mode | Name | RT [min] | Lipidmaps_ID | m/z | Trend | VIP | p Value | AUC |
---|---|---|---|---|---|---|---|---|---|
1 | − | LPC (16:0) | 9.406 | LMGP01050113 | 540.33057 | ↑ | 1.93 | 0.0021 | 0.97 |
2 | + | LPC (18:2) | 9.545 | LMGP01050137 | 520.34058 | ↑ | 1.67 | 0.0131 | 0.87 |
3 | − | LPC (18:0) | 10.298 | LMGP01050076 | 568.36273 | ↑ | 1.58 | 0.0235 | 0.83 |
4 | − | LPC (18:1) | 9.391 | LMGP01050138 | 566.34705 | ↑ | 1.55 | 0.0266 | 0.87 |
5 | + | LPE (17:1) | 8.87 | LMGP02050008 | 466.29416 | ↑ | 1.49 | 0.0424 | 0.87 |
6 | + | LPE (20:5) | 8.2 | LMGP02050053 | 500.27875 | ↑ | 1.41 | 0.0432 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Meng, Z.; Huang, Y.; Xu, L.; Chen, Q.; Qiao, D.; Yue, X. Chronic Sleep Deprivation Causes Anxiety, Depression and Impaired Gut Barrier in Female Mice—Correlation Analysis from Fecal Microbiome and Metabolome. Biomedicines 2024, 12, 2654. https://doi.org/10.3390/biomedicines12122654
Li L, Meng Z, Huang Y, Xu L, Chen Q, Qiao D, Yue X. Chronic Sleep Deprivation Causes Anxiety, Depression and Impaired Gut Barrier in Female Mice—Correlation Analysis from Fecal Microbiome and Metabolome. Biomedicines. 2024; 12(12):2654. https://doi.org/10.3390/biomedicines12122654
Chicago/Turabian StyleLi, Lingyue, Zilin Meng, Yuebing Huang, Luyao Xu, Qianling Chen, Dongfang Qiao, and Xia Yue. 2024. "Chronic Sleep Deprivation Causes Anxiety, Depression and Impaired Gut Barrier in Female Mice—Correlation Analysis from Fecal Microbiome and Metabolome" Biomedicines 12, no. 12: 2654. https://doi.org/10.3390/biomedicines12122654
APA StyleLi, L., Meng, Z., Huang, Y., Xu, L., Chen, Q., Qiao, D., & Yue, X. (2024). Chronic Sleep Deprivation Causes Anxiety, Depression and Impaired Gut Barrier in Female Mice—Correlation Analysis from Fecal Microbiome and Metabolome. Biomedicines, 12(12), 2654. https://doi.org/10.3390/biomedicines12122654