Negative Roles of Strigolactone-Related SMXL6, 7 and 8 Proteins in Drought Resistance in Arabidopsis
<p>Enhanced drought resistance of <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant plants. Comparisons of <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant and wild-type (WT) plants were performed using the ‘same tray’ (<b>a</b>–<b>d</b>), ‘one pot’ (<b>e</b>) and ‘weighing’ (<b>f</b>–<b>h</b>) methods. (<b>a</b>) WT and <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant plants were grown for 21 days under well-watered conditions in a tray. (<b>b</b>) Water was withheld to observe distinguishable differences between the two genotypes. After 15 days of water withholding, rewatering was conducted. A picture was taken five days after rewatering, and after inflorescences were removed. (<b>c</b>) Control well-watered plants were grown in parallel with the drought resistance assay. (<b>d</b>) Means and standard errors (SEs) of three independent experiments (<span class="html-italic">n</span> = 3, 30 plants/genotype/experiment) were used to estimate the survival rates of investigated WT and <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant plants. Red number above the error bar indicates the fold-change in survival rate of <span class="html-italic">smxl6,7,8</span> mutant over the WT. (<b>e</b>) WT and <span class="html-italic">smxl6,7,8</span> plants were grown side-by-side in a small pot. Water was withheld to observe distinguishable differences between the two genotypes. After 15 days of water withholding, rewatering was conducted. Picture was taken five days after rewatering, and after inflorescences were removed. (<b>f</b>) Pot weights during the soil-drying process of the ‘weighing’ method. Data are means and SEs (<span class="html-italic">n</span> = 12 pots/genotype). (<b>g</b>) Shoot dry weights of WT and <span class="html-italic">smxl6,7,8</span> mutant plants were measured at day 17th of the well-watered or drought treatment. (<b>h</b>) Shoot biomass reduction percentages of WT and <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant plants at day 17th of the ‘weighing’ assay. Data are means and SEs (<span class="html-italic">n</span> = 12 plants/genotype). Letters above the error bars indicate significant differences (Tukey’s honest significant difference test; <span class="html-italic">p</span> < 0.05). Asterisks show significant differences between the two genotypes (Student’s <span class="html-italic">t</span>-test; *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 2
<p>Relative water contents, electrolyte leakage percentages and anthocyanin contents obtained from <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant and wild-type (WT) plants during the soil-drying experiment using the ‘same tray’ method. (<b>a</b>) Soil moisture content and relative air humidity during the soil-drying. (<b>b</b>,<b>c</b>) Relative water contents (<b>b</b>) and electrolyte leakage percentages (<b>c</b>) of the two genotypes during the soil-drying. (<b>d</b>,<b>e</b>) Anthocyanin contents in the two genotypes under well-watered (<b>d</b>) and progressive soil-drying (<b>e</b>). Data are means and SEs (<span class="html-italic">n</span> = 4 plants/genotype). Asterisks show significant differences between the <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant and WT plants at each time point (Student’s <span class="html-italic">t</span>-test; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>Leaf surface temperatures and cuticular permeability of <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant and wild-type (WT) plants. (<b>a</b>,<b>b</b>) Leaf surface temperatures of the two genotypes without (<b>a</b>) and with soil-drying for seven days (<b>b</b>). (<b>c</b>) Relative water contents of rosette leaves of the two genotypes under dehydration. (<b>d</b>) Detection of cuticular permeability by toluidine blue staining of rosette leaves of four-week-old WT and <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant plants grown under normal growth conditions. (<b>e</b>) Percentages of chlorophyll (Chl) leaching from the rosette leaves of four-week-old WT and <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant plants grown under normal growth conditions. Data shown in (<b>c</b>) and (<b>e</b>) are means and SEs (<span class="html-italic">n</span> = 5 plants). Asterisks show significant differences between the two genotypes at each time point (Student’s <span class="html-italic">t</span>-test; ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001).</p> "> Figure 4
<p>Abscisic acid (ABA) responsiveness of <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant and wild-type (WT) plants. (<b>a</b>) Cotyledon opening of the two genotypes in responses to different ABA concentrations. Data are means and standard deviations of three independent experiments (<span class="html-italic">n</span> = 3, 50 seeds/genotype/experiment). Asterisks show significant difference between the <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant and WT plants at each time point (Student’s <span class="html-italic">t</span>-test; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001). (<b>b</b>) Growth of the two genotypes on medium supplied with different ABA concentrations. Representative pictures of 14-day-old plants are shown. (<b>c</b>) Relative fresh weights (FW) of 14-day-old <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant and WT seedlings grown on medium supplied with different ABA concentrations. Data show means and standard errors (<span class="html-italic">n</span> = 5 replicates, six seedlings/replicate). Letters above the error bars show significant differences in all combinations (Tukey’s honest significant difference test; <span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Detoxification capacity of reactive oxygen species in <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant and wild-type (WT) plants. (<b>a</b>,<b>b</b>) Histochemical analyses of O<sub>2</sub><b><sup>.</sup></b><sup>–</sup> accumulation (<b>a</b>) and H<sub>2</sub>O<sub>2</sub> accumulation (<b>b</b>) through nitro blue tetrazolium (<b>a</b>) and 3,3′-diaminobenzidine (<b>b</b>) stainings of rosette leaves of 28-day-old <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant and WT plants. (<b>c</b>) Growth inhibition assays of the two genotypes using 3-amino-1,2,4-triazole (3-AT) and paraquat (PQ). Representative pictures of 21-day-old plants are shown. (<b>d</b>,<b>e</b>) Relative fresh weights (FWs) of 21-day-old <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant and WT plants grown on medium supplied with different concentrations of 3-AT (<b>d</b>) or PQ (<b>e</b>). Data show means and standard errors (<span class="html-italic">n</span> = 10 plants/genotype). Letters above the error bars show significant differences in all combinations (Tukey’s honest significant difference test; <span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Expression patterns of several marker genes related to several drought resistance-associated traits in <span class="html-italic">smxl6</span>,<span class="html-italic">7</span>,<span class="html-italic">8</span> mutant and wild-type (WT) plants under normal and dehydration conditions. Rosette leaves of 24-day-old soil-grown plants were used for qRT-PCR analysis. Relative transcript levels were normalized to a value of 1 in the non-dehydrated WT. Data shown are means and standard errors (<span class="html-italic">n</span> = 3 biological replicates). Asterisks show significant differences between the <span class="html-italic">smxl6,7,8</span> mutant and WT plants in the same treatment condition (Student’s <span class="html-italic">t</span>-test; * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Generation of Plate-Grown Seedlings
2.2. Drought Resistance Assays
2.3. Relative Water Content (RWC), Electrolyte Leakage and Anthocyanin Content
2.4. Leaf Surface Temperature, Dehydration Treatment, Toluidine Blue (TB) Staining and Chlorophyll (Chl) Leaching Assays
2.5. Evaluation of ABA Responsiveness Using Cotyledon Opening and Growth Inhibition Assays
2.6. In Situ Detection of ROS and Plant Response to Oxidative Stress
2.7. Quantitative Reverse Transcriptase-PCR (qRT-PCR) Analysis
3. Results
3.1. Arabidopsis smxl6,7,8 Mutant Plants Exhibit Enhanced Drought Resistance
3.2. Arabidopsis smxl6,7,8 Mutant Plants Show Reduced Water Loss and Electrolyte Leakage, and Increased Anthocyanin Content during Drought
3.3. Arabidopsis smxl6,7,8 Mutant Plants Display Increased Leaf Surface Temperature and Reduced Cuticular Permeability
3.4. Arabidopsis smxl6,7,8 Mutant Plants Show Increased ABA Sensitivity
3.5. Arabidopsis smxl6,7,8 Mutant Plants Display Enhanced Oxidative Stress Resistance
3.6. Expression Analysis of Marker Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Al-Babili, S.; Bouwmeester, H.J. Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 2015, 66, 161–186. [Google Scholar] [CrossRef]
- Morffy, N.; Faure, L.; Nelson, D.C. Smoke and hormone mirrors: Action and evolution of karrikin and strigolactone signaling. Trends Genet. 2016, 32, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, F.; Krukowski, P.K.; Schubert, A.; Visentin, I. Strigolactones: Mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. J. Exp. Bot. 2018, 69, 2291–2303. [Google Scholar] [CrossRef] [PubMed]
- Mostofa, M.G.; Li, W.; Nguyen, K.H.; Fujita, M.; Tran, L.-S.P. Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant Cell Environ. 2018, 41, 2227–2243. [Google Scholar] [CrossRef] [PubMed]
- Seto, Y.; Yamaguchi, S. Strigolactone biosynthesis and perception. Curr. Opin. Plant Biol. 2014, 21, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wang, B.; Jiang, L.; Liu, X.; Li, X.; Lu, Z.; Meng, X.; Wang, Y.; Smith, S.M.; Li, J. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 2015, 27, 3128–3142. [Google Scholar] [CrossRef] [Green Version]
- Soundappan, I.; Bennett, T.; Morffy, N.; Liang, Y.; Stanga, J.P.; Abbas, A.; Leyser, O.H.M.; Nelson, D.C. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 2015, 27, 3143–3159. [Google Scholar] [CrossRef]
- Arite, T.; Umehara, M.; Ishikawa, S.; Hanada, A.; Maekawa, M.; Yamaguchi, S.; Kyozuka, J. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 2009, 50, 1416–1424. [Google Scholar] [CrossRef] [Green Version]
- Waters, M.T.; Nelson, D.C.; Scaffidi, A.; Flematti, G.R.; Sun, Y.K.M.; Dixon, K.W.; Smith, S.M. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 2012, 139, 1285–1295. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.F.; Ming, Z.H.; Yan, L.M.; Li, S.H.; Wang, F.; Ma, S.; Yu, C.T.; Yang, M.; Chen, L.; Chen, L.H.; et al. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 2016, 536, 469–473. [Google Scholar] [CrossRef]
- Seto, Y.; Yasui, R.; Kameoka, H.; Tamiru, M.; Cao, M.; Terauchi, R.; Sakurada, A.; Hirano, R.; Kisugi, T.; Hanada, A.; et al. Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat. Commun. 2019, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Stirnberg, P.; van De Sande, K.; Leyser, O.H.M. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 2002, 129, 1131–1141. [Google Scholar] [PubMed]
- Swarbreck, S.M.; Guerringue, Y.; Matthus, E.; Jamieson, F.J.C.; Davies, J.M. Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana. Plant J. 2019, 98, 607–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villaécija-Aguilar, J.A.; Hamon-Josse, M.; Carbonnel, S.; Kretschmar, A.; Schmidt, C.; Dawid, C.; Bennett, T.; Gutjahr, C. SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genet. 2019, 15, e1008327. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.; Lv, T.; Shen, H.; Luong, P.; Wang, J.; Wang, Z.; Huang, Z.; Xiao, L.; Engineer, C.; Kim, T.H.; et al. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol. 2014, 164, 424–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, C.V.; Leyva-Gonzalez, M.A.; Osakabe, Y.; Tran, U.T.; Nishiyama, R.; Watanabe, Y.; Tanaka, M.; Seki, M.; Yamaguchi, S.; Dong, N.V.; et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. USA 2014, 111, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Nguyen, K.H.; Chu, H.D.; Ha, C.V.; Watanabe, Y.; Osakabe, Y.; Leyva-Gonzalez, M.A.; Sato, M.; Toyooka, K.; Voges, L.; et al. The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genet. 2017, 13, e1007076. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lv, S.; Wang, G. Strigolactones are common regulators in induction of stomatal closure in planta. Plant Signal Behav. 2018, 13, e1444322. [Google Scholar] [CrossRef]
- Li, W.; Nguyen, K.H.; Chu, H.D.; Watanabe, Y.; Osakabe, Y.; Sato, M.; Toyooka, K.; Seo, M.; Tian, L.; Tian, C.; et al. Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVE2 in drought adaptation of Arabidopsis thaliana. Plant J. 2020. [Google Scholar] [CrossRef]
- Liu, J.; He, H.; Vitali, M.; Visentin, I.; Charnikhova, T.; Haider, I.; Schubert, A.; Ruyter-Spira, C.; Bouwmeester, H.J.; Lovisolo, C.; et al. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: Exploring the interaction between strigolactones and ABA under abiotic stress. Planta 2015, 241, 1435–1451. [Google Scholar] [CrossRef]
- Visentin, I.; Vitali, M.; Ferrero, M.; Zhang, Y.; Ruyter-Spira, C.; Novak, O.; Strnad, M.; Lovisolo, C.; Schubert, A.; Cardinale, F. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol. 2016, 212, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, R.; Watanabe, Y.; Fujita, Y.; Le, D.T.; Kojima, M.; Werner, T.; Vankova, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Kakimoto, T.; et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 2011, 23, 2169–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Nozoye, T.; Sasaki, E.; Imai, M.; Shiwa, Y.; Shibata-Hatta, M.; Ishige, T.; Fukui, K.; Ito, K.; Nakanishi, H.; et al. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis. PLoS ONE 2015, 10, e0119724. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Tanaka, H.; Machida, C.; Watanabe, M.; Machida, Y. A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. Plant J. 2004, 37, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Romero-Puertas, M.C.; Rodriguez-Serrano, M.; Corpas, F.J.; Gomez, M.; Del Rio, L.A.; Sandalio, L.M. Cadmium-induced subcellular accumulation of O2- and H2O2 in pea leaves. Plant Cell Environ. 2004, 27, 1122–1134. [Google Scholar] [CrossRef]
- Kurepa, J.; Smalle, J.; Van Montagu, M.; Inze, D. Oxidative stress tolerance and longevity in Arabidopsis: The late-flowering mutant gigantea is tolerant to paraquat. Plant J. 1998, 14, 759–764. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Allen, R.D. Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol. 1999, 40, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Mahmood, K.; Rothstein, S.J. ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant Cell Physiol. 2017, 58, 1364–1377. [Google Scholar] [CrossRef]
- Le, D.T.; Nishiyama, R.; Watanabe, Y.; Mochida, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.-S.P. Genome-wide expression profiling of soybean two-component system genes in soybean root and shoot tissues under dehydration stress. DNA Res. 2011, 18, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 46, 1092. [Google Scholar] [CrossRef]
- Miller, G.; Suzuki, N.; Ciftci-Yilmaz, S.; Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010, 33, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, R.; Yonekura-Sakakibara, K.; Urano, K.; Suzuki, M.; Yamada, Y.; Nishizawa, T.; Matsuda, F.; Kojima, M.; Sakakibara, H.; Shinozaki, K.; et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 2014, 77, 367–779. [Google Scholar] [CrossRef]
- Merlot, S.; Mustilli, A.C.; Genty, B.; North, H.; Lefebvre, V.; Sotta, B.; Vavasseur, A.; Giraudat, J. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 2002, 30, 601–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanno, Y.; Hanada, A.; Chiba, Y.; Ichikawa, T.; Nakazawa, M.; Matsui, M.; Koshiba, T.; Kamiya, Y.; Seo, M. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc. Natl. Acad. Sci. USA 2012, 109, 9653–9658. [Google Scholar] [CrossRef] [Green Version]
- Kuromori, T.; Sugimoto, E.; Ohiraki, H.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Functional relationship of AtABCG21 and AtABCG22 in stomatal regulation. Sci Rep. 2017, 7, 12501. [Google Scholar] [CrossRef] [Green Version]
- Yeats, T.H.; Rose, J.K. The formation and function of plant cuticles. Plant Physiol. 2013, 163, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.V.; Ibarra, S.E.; Piccoli, P.N.; Botto, J.F.; Boccalandro, H.E. Phytochrome B increases drought tolerance by enhancing ABA sensitivity in Arabidopsis thaliana. Plant Cell Environ. 2012, 35, 1958–1968. [Google Scholar] [CrossRef]
- Xie, Y.; Mao, Y.; Duan, X.; Zhou, H.; Lai, D.; Zhang, Y.; Shen, W. Arabidopsis HY1 modulated stomatal movement: An integrative hub is functionally associated with ABI4 in dehydration-induced ABA responsiveness. Plant Physiol. 2016, 170, 1699–1713. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Bhattacharjee, S.; Armin, S.M.; Qian, P.; Xin, W.; Li, H.Y.; Burritt, D.J.; Fujita, M.; Tran, L.S. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front. Plant Sci. 2015, 6, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenbohm, C.; Martens, S.; Eder, C.; Forkmann, G.; Weisshaar, B. Identification of the Arabidopsis thaliana flavonoid 3’-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol. Chem. 2000, 381, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wu, X.; Lam, P.; Bird, D.; Zheng, H.; Samuels, L.; Jetter, R.; Kunst, L. Identification of the wax ester synthase/acyl-coenzyme A: Diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol. 2008, 148, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Wu, Y.; Xie, Q. Precise protein post-translational modifications modulate ABI5 activity. Trends Plant Sci. 2015, 20, 569–575. [Google Scholar] [CrossRef]
- Jin, Z.; Sun, L.; Yang, G.; Pei, Y. Hydrogen sulfide regulates energy production to delay leaf senescence induced by drought stress in Arabidopsis. Front. Plant Sci. 2018, 9, 1722. [Google Scholar] [CrossRef] [Green Version]
- Per, T.S.; Khan, N.A.; Reddy, P.S.; Masood, A.; Hasanuzzaman, M.; Khan, M.I.R.; Anjum, N.A. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem. 2017, 115, 126–140. [Google Scholar] [CrossRef]
- Candat, A.; Paszkiewicz, G.; Neveu, M.; Gautier, R.; Logan, D.C.; Avelange-Macherel, M.H.; Macherel, D. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell 2014, 26, 3148–3166. [Google Scholar] [CrossRef] [Green Version]
- Elthon, T.E.; Stewart, C.R. Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation. Plant Physiol. 1981, 67, 780–784. [Google Scholar] [CrossRef] [Green Version]
- Funck, D.; Eckard, S.; Muller, G. Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis. BMC Plant Biol. 2010, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Ingram, J.; Bartels, D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 377–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magwanga, R.O.; Lu, P.; Kirungu, J.N.; Lu, H.; Wang, X.; Cai, X.; Zhou, Z.; Zhang, Z.; Salih, H.; Wang, K.; et al. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet. 2018, 19, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Y.; Miao, M.; Meng, Y.; Cao, J.; Fan, T.; Yue, J.; Xiao, F.; Liu, Y.; Cao, S. DFR1-mediated inhibition of proline degradation pathway regulates drought and freezing tolerance in Arabidopsis. Cell Rep. 2018, 23, 3960–3974. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Terashima, S.; Fukaya, T.; Kuboi, T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 2003, 217, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Fujinaga, M.; Kuboi, T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol. Biochem. 2004, 42, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Tunnacliffe, A.; Wise, M.J. The continuing conundrum of the LEA proteins. Naturwissenschaften 2007, 94, 791–812. [Google Scholar] [CrossRef]
- Ding, Z.J.; Yan, J.Y.; Xu, X.Y.; Yu, D.Q.; Li, G.X.; Zhang, S.Q.; Zheng, S.J. Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis. Plant J. 2014, 79, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Bajji, M.; Kinet, J.M.; Lutts, S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 2002, 36, 61–70. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Deng, G.F.; Fan, W.J.; Yuan, L.; Wang, H.X.; Zhang, P. NHX1 and eIF4A1-stacked transgenic sweetpotato shows enhanced tolerance to drought stress. Plant Cell Rep. 2019, 38, 1427–1438. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, X.; Zhang, L. Structural and functional dynamics of dehydrins: A plant protector protein under abiotic stress. Int. J. Mol. Sci. 2018, 19, E3420. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Fluhr, R. Singlet oxygen plays an essential role in the root’s response to osmotic stress. Plant Physiol. 2018, 177, 1717–1727. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Li, C.; Liu, Z.; Yang, N.; Pan, L.; Wu, J.; Wang, J.; Yang, J.; Lv, Y.; et al. Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytol. 2018, 217, 290–304. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Yang, F.B.; Zhang, G.Z.; Song, S.F.; Li, Y.; Ren, D.T.; Miao, Y.C.; Song, C.P. AIK1, A mitogen-activated protein kinase, modulates abscisic acid responses through the MKK5-MPK6 kinase cascade. Plant Physiol. 2017, 173, 1391–1408. [Google Scholar] [CrossRef] [Green Version]
- Jagodzik, P.; Tajdel-Zielinska, M.; Ciesla, A.; Marczak, M.; Ludwikow, A. Mitogen-activated protein kinase cascades in plant hormone signaling. Front. Plant Sci. 2018, 9, 1387. [Google Scholar] [CrossRef]
- Fujita, Y.; Fujita, M.; Satoh, R.; Maruyama, K.; Parvez, M.M.; Seki, M.; Hiratsu, K.; Ohme-Takagi, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 2005, 17, 3470–3488. [Google Scholar] [CrossRef] [Green Version]
- Walton, A.; Stes, E.; Goeminne, G.; Braem, L.; Vuylsteke, M.; Matthys, C.; De Cuyper, C.; Staes, A.; Vandenbussche, J.; Boyer, F.D.; et al. The response of the root proteome to the synthetic strigolactone GR24 in Arabidopsis. Mol. Cell Proteomics. 2016, 15, 2744–2755. [Google Scholar] [CrossRef] [Green Version]
- Stanga, J.P.; Morffy, N.; Nelson, D.C. Functional redundancy in the control of seedling growth by the karrikin signaling pathway. Planta 2016, 243, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Nguyen, K.H.; Tran, C.D.; Watanabe, Y.; Tian, C.; Yin, X.; Li, K.; Yang, Y.; Guo, J.; Miao, Y.; et al. Negative Roles of Strigolactone-Related SMXL6, 7 and 8 Proteins in Drought Resistance in Arabidopsis. Biomolecules 2020, 10, 607. https://doi.org/10.3390/biom10040607
Li W, Nguyen KH, Tran CD, Watanabe Y, Tian C, Yin X, Li K, Yang Y, Guo J, Miao Y, et al. Negative Roles of Strigolactone-Related SMXL6, 7 and 8 Proteins in Drought Resistance in Arabidopsis. Biomolecules. 2020; 10(4):607. https://doi.org/10.3390/biom10040607
Chicago/Turabian StyleLi, Weiqiang, Kien Huu Nguyen, Cuong Duy Tran, Yasuko Watanabe, Chunjie Tian, Xiaojian Yin, Kun Li, Yong Yang, Jinggong Guo, Yuchen Miao, and et al. 2020. "Negative Roles of Strigolactone-Related SMXL6, 7 and 8 Proteins in Drought Resistance in Arabidopsis" Biomolecules 10, no. 4: 607. https://doi.org/10.3390/biom10040607
APA StyleLi, W., Nguyen, K. H., Tran, C. D., Watanabe, Y., Tian, C., Yin, X., Li, K., Yang, Y., Guo, J., Miao, Y., Yamaguchi, S., & Tran, L. -S. P. (2020). Negative Roles of Strigolactone-Related SMXL6, 7 and 8 Proteins in Drought Resistance in Arabidopsis. Biomolecules, 10(4), 607. https://doi.org/10.3390/biom10040607