Rings, Hexagons, Petals, and Dipolar Moment Sink-Sources: The Fanciful Behavior of Water around Cyclodextrin Complexes
<p>Two-dimensional representation of an α-cyclodextrin (CD) (left) and of an α-CD<sub>2</sub>SDS<sub>1</sub> complex (right) with the oxygen atoms labelled. Just the polar H atoms are shown in the left figure. The surfactant molecule is represented in yellow sticks and transparent spheres while the two CDs in the complex are presented in lines and sticks.</p> "> Figure 2
<p>Representation of simulation boxes with an α-CD<sub>2</sub>SDS<sub>1</sub> complex in the bulk aqueous solution (left) and in the presence of an air/water interface (middle). The supramolecular structure in the second image appears adsorbed with the symmetry axis parallel to the interface. Definition of the yaw, pitch, and roll angles for an α-CD<sub>2</sub>SDS<sub>1</sub> complex (right). The three rotation angles are defined with respect to the interface shown in the central image. The CD molecules that are closer (CD1) and further (CD2) from the SDS polar head in the complex are represented in red and orange, respectively, with the glucopyranoside (GPU) rings in sphere representation and the hydroxyl groups in sticks. The sodium dodecyl sulfate (SDS) molecule is in yellow sticks, with the Sulphur atom as a sphere.</p> "> Figure 3
<p>Water density (blue-white gradient from highest to lowest) and average water dipole moment (orange vectors) around the α-CD<sub>2</sub>SDS<sub>1</sub> complex in the aqueous solution (left) and in the presence of water/air interface (right) for four trajectories generated using the GROMOS force field with the G_2 method (original GROMOS 54a7 force field with 2 fs time step) (top) and the AMBER/GAFF building block parameterization based on GPU rings with RESP charges (bottom). The O2 (red), O3 (black), O4 (purple), O5 (grey), and O6 (green) atoms of the two CDs comprising the complex, together with the sulfur atom of the SDS molecule (yellow), are also represented. The last 10,000 frames of one trajectory with the complex aligned to the O4 atoms were employed for these calculations. A resolution of 0.5 × 0.5 Å<sup>2</sup> in the XZ plane for a 3 Å width slice perpendicular to the Y axis and centered in the symmetry axis of the complex was considered to generate the plot.</p> "> Figure 4
<p>Water density (blue–white gradient from highest to lowest) and average water dipole moment (orange vectors) around the α-CD<sub>2</sub>SDS<sub>1</sub> structure in aqueous solution for a trajectory generated using the G_2 method (original GROMOS 54a7 force field with 2 fs time step). Nine 3 Å width slices perpendicular to the symmetry axis of the complex and comprising the atoms at the indicated distances (R) from the center of the structure, were considered. The position of each slice is indicated by the brackets and arrows. The O2 (red), O3 (black), O4 (purple), O5 (grey), and O6 (green) atoms of the two CDs comprising the complex, together with the sulfur atom of the SDS molecule (yellow), are also represented. The last 10,000 frames of one trajectory with the complex aligned to the O4 atoms were employed for these calculations. A resolution of 0.5 × 0.5 Å<sup>2</sup> in the YZ plane was considered to generate each plot. Equivalent plots for the rest of the studied parameterization methods are shown in the <a href="#app1-biomolecules-10-00431" class="html-app">Supplementary Materials</a>.</p> "> Figure 5
<p>Water density (blue–white gradient from highest to lowest) and average water dipole moment (orange vectors) around the α-CD<sub>2</sub>SDS<sub>1</sub> structure in aqueous solution for a trajectory generated using the G_2 method (original GROMOS 54a7 force field with 2 fs time step). Thirteen 1 Å thick coaxial shells centered in the symmetry axis of the complex were considered but only the more representative six are shown with the corresponding maximum and minimum radius indicated in each image. Cylindrical coordinates are employed, for clarity. The distances to the symmetry axis corresponding to each shell are indicated in the figure. The O2 (red), O3 (black), O4 (purple), O5 (grey), and O6 (green) atoms of the two CDs comprising the complex, together with the sulfur atom of the SDS molecule (yellow), are represented in all the images as a reference even though they are not within the indicated radii. The last 10,000 frames of one trajectory with the complex aligned to the O4 atoms were employed for these calculations. A resolution of 0.5 × 0.5 Å<sup>2</sup> in the φx plane was considered to generate each plot. Equivalent plots for the rest of the studied parameterization methods are shown in the <a href="#app1-biomolecules-10-00431" class="html-app">Supplementary Materials</a>.</p> "> Figure 6
<p>Area of the hexagons formed by the six O2 (red), O3 (black), O4 (purple), O5 (grey), and O6 (green) atoms of the CD molecules that are closer (solid thick lines) and further (dotted thin lines) from the SDS head. The right-upper plot (red-squared) shows the area of the hexagons formed by the six O2 of CD1 (thick red line) and CD2 (thin red line) between 50 and 150 ns together with: (i) The intramolecular H-bonds between the hydroxyl groups 2 and 3 of the CD that is closer and further to the SDS head (thick and thin blue lines, respectively); and (ii) the intermolecular H-bonds between the hydroxyl groups 2 and 3 of the first CD and second CD (thick yellow line) and vice versa (thin yellow line). The right-lower plot (black-squared) shows the same H-bond information as in the red-squared box, compared to the area of the hexagon formed by the six O3 of CD1 (thick black line) and CD2 (thin black line). This figure was obtained from the simulation of the α-CD<sub>2</sub>SDS<sub>1</sub> structure in aqueous solution for a trajectory generated using the G_2 method (original GROMOS 54a7 force field with 2 fs time step). All the curves were moving-averaged over 3.5 ns in order to remove noise. Equivalent plots for the rest of the studied parameterization methods are shown in the <a href="#app1-biomolecules-10-00431" class="html-app">Supplementary Materials</a>.</p> "> Figure 7
<p>Distance between the center of the O4 atoms of the two CDs in the α-CD<sub>2</sub>SDS<sub>1</sub> structure and the center of mass of the water molecules (first row). Yaw (red), pitch (blue), and roll (black) angles of the 2:1 complex as defined in <a href="#biomolecules-10-00431-f002" class="html-fig">Figure 2</a> with respect to the water/air interface (second row). Number of water molecules at less than 3 Å of any atom of the CD that is closer (solid lines) and further (dashed lines) to the SDS head in the complex (third to fifth rows). Rows 3, 4, and 5 represent GPU units {1,4}, {2,5}, and {3,6} for one CD (black lines), respectively, and the corresponding GPU units (i.e., those in the same generatrix of the nanocylinder-shaped structure) of the opposite CD (red lines). This plot results from the analysis of a MD trajectory using the G_2 parameterization method in the presence of a water/air interface. Equivalent plots for the rest of the studied parameterization methods are shown in the <a href="#app1-biomolecules-10-00431" class="html-app">Supplementary Materials</a>.</p> "> Figure 8
<p>Water density (blue–white gradient from highest to lowest) and average water dipole moment (orange vectors) around the α-CD<sub>2</sub>SDS<sub>1</sub> structure at the water/air interface for a trajectory generated using the G_2 method (original GROMOS 54a7 force field with 2 fs time step). Nine 3 Å width slices perpendicular to the symmetry axis of the complex were considered. The position of each slice is indicated by the brackets and arrows. The O2 (red), O3 (black), O4 (purple), O5 (grey), and O6 (green) atoms of the two CDs comprising the complex, together with the sulfur atom of the SDS molecule (yellow), are also represented. A selection of the last 10,000 frames of one trajectory with the complex aligned to the O4 atoms, corresponding to the frames where the GPU number 1 of the first CD has the minimum hydration, were employed for these calculations. A resolution of 0.5 × 0.5 Å<sup>2</sup> in the YZ plane was considered to generate each plot. Equivalent plots for the rest of the studied parameterization methods are shown in the <a href="#app1-biomolecules-10-00431" class="html-app">Supplementary Materials</a>.</p> "> Figure 9
<p>Water density (blue–white gradient from highest to lowest) and average water dipole moment (orange vectors) around the α-CD<sub>2</sub>SDS<sub>1</sub> structure at the water/air interface for a trajectory generated using the G_2 method (original GROMOS 54a7 force field with 2 fs time step). Six 1 Å thick coaxial shells centered in the symmetry axis of the complex were considered and cylindrical coordinates are employed, for clarity. The distances to the symmetry axis corresponding to each shell is indicated in the figure. The O2 (red), O3 (black), O4 (purple), O5 (grey), and O6 (green) atoms of the two CDs comprising the complex, together with the sulfur atom of the SDS molecule (yellow), are also represented. The last 10,000 frames of one trajectory with the complex aligned to the O4 atoms were employed for these calculations. A resolution of 0.5 × 0.5 Å<sup>2</sup> in the φx plane was considered to generate each plot. Equivalent plots for the rest of the studied parameterization methods are shown in the <a href="#app1-biomolecules-10-00431" class="html-app">Supplementary Materials</a>.</p> "> Figure 10
<p>Area of the hexagons formed by the six O2 (red), O3 (black), O4 (purple), O5 (grey), and O6 (green) atoms of the CD molecules that are closer (solid lines) and further (dashed lines) from the SDS head. This plot corresponds to the simulation of the α-CD<sub>2</sub>SDS<sub>1</sub> structure at the water/air interface for a trajectory generated using the G_2 method (original GROMOS 54a7 force field with 2 fs time step). Equivalent plots for the rest of the studied parameterization methods are shown in the <a href="#app1-biomolecules-10-00431" class="html-app">Supplementary Materials</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Set Up of the Simulation Boxes and MD Simulation Parameters
2.2. Parameterization Methods
2.3. Analysis of the Trajectories
3. Results
3.1. Simulations in the Bulk Aqueous Solutions Using the G_2 Metho
3.2. Comparison between G_2 and Other Simulation Methods Using GROMOS and AMBER/GAFF Force Fields in the Bulk Aqueous Solution
3.3. H-Bond Analysis of Simulations in the Bulk Aqueous Solution
3.4. Simulations at the Water/Air Interface Using the Different Parameterizations of the GROMOS Force Field
3.5. H-Bond Analysis of Simulations at the Water/Air Interfaces Using the Different Parameterizations of the GROMOS Force Field
3.6. Analysis of Simulations Using the AMBER Force Field in the Presence of the Water/Air Interfaces
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hernandez-Pascacio, J.; Piñeiro, A.; Ruso, J.M.; Hassan, N.; Campbell, R.A.; Campos-Terán, J.; Costas, M. Complex behavior of aqueous α-cyclodextrin solutions. Interfacial morphologies resulting from bulk aggregation. Langmuir 2016, 32, 6682–6690. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Bricout, H.; Azaroual, N.; Landy, D.; Tilloy, S.; Hapiot, F.; Monflier, E. Cyclodextrin/amphiphilic phosphane mixed systems and their applications in aqueous organometallic catalysis. Adv. Synth. Catal. 2012, 354, 1337–1346. [Google Scholar] [CrossRef]
- González-Gaitano, G.; Rodriguez, P.; Isasi, J.R.; Fuentes, M.; Tardajos, G.; Sánchez, M. The aggregation of cyclodextrins as studied by photon correlation spectroscopy. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 101–105. [Google Scholar] [CrossRef]
- Yang, S.; Yan, Y.; Huang, J.; Petukhov, A.V.; Kroon-Batenburg, L.M.; Drechsler, M.; Zhou, C.; Tu, M.; Granick, S.; Jiang, L. Giant capsids from lattice self-assembly of cyclodextrin complexes. Nat. Commun. 2017, 8, 15856. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Pascacio, J.; Banquy, X.; Pérez-Casas, S.; Costas, M.; Amigo, A.; Piñeiro, Á. A small molecular size system giving unexpected surface effects: α-Cyclodextrin+ sodium dodecyl sulfate in water. J. Colloid Interface Sci. 2008, 328, 391–395. [Google Scholar] [CrossRef]
- Hernandez-Pascacio, J.; Garza, C.; Banquy, X.; Díaz-Vergara, N.; Amigo, A.; Ramos, S.; Castillo, R.; Costas, M.; Piñeiro, Á. Cyclodextrin-based self-assembled nanotubes at the water/air interface. J. Phys. Chem. B 2007, 111, 12625–12630. [Google Scholar] [CrossRef]
- Couto, A.R.S.; Aguiar, S.; Ryzhakov, A.; Larsen, K.L.; Loftsson, T. Interaction of native cyclodextrins and their hydroxypropylated derivatives with parabens in aqueous solutions. Part 1: Evaluation of inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 2019, 93, 309–321. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [Green Version]
- Marrink, S.J.; Corradi, V.; Souza, P.C.; Ingόlfsson, H.I.; Tieleman, D.P.; Sansom, M.S. Computational modeling of realistic cell membranes. Chem. Rev. 2019, 119, 6184–6226. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Yao, S.; Chen, X.; Huang, Y.; Song, H. A new strategy for the construction of β-cyclodextrin-based magnetic nanocarriers: A molecular docking technique. New J. Chem. 2019, 43, 4282–4290. [Google Scholar] [CrossRef]
- Khuntawee, W.; Wolschann, P.; Rungrotmongkol, T.; Wong-Ekkabut, J.; Hannongbua, S. Molecular dynamics simulations of the interaction of beta cyclodextrin with a lipid bilayer. J. Chem. Inf. Model. 2015, 55, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Nutho, B.; Nunthaboot, N.; Wolschann, P.; Kungwan, N.; Rungrotmongkol, T. Metadynamics supports molecular dynamics simulation-based binding affinities of eucalyptol and beta-cyclodextrin inclusion complexes. RSC Adv. 2017, 7, 50899–50911. [Google Scholar] [CrossRef] [Green Version]
- Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; De Vries, A.H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Periole, X.; Cavalli, M.; Marrink, S.J.; Ceruso, M.A. Combining an elastic network with a coarse-grained molecular force field: Structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 2009, 5, 2531–2543. [Google Scholar] [CrossRef] [Green Version]
- Otero-Mato, J.M.; Montes-Campos, H.; Calvelo, M.; Garcia-Fandino, R.; Gallego, L.J.; Piñeiro, A.; Varela, L.M. GADDLE Maps: General Algorithm for Discrete Object Deformations Based on Local Exchange Maps. J. Chem. Theory Comput. 2018, 14, 466–478. [Google Scholar] [CrossRef]
- Wassenaar, T.A.; Pluhackova, K.; Böckmann, R.A.; Marrink, S.J.; Tieleman, D.P. Going backward: A flexible geometric approach to reverse transformation from coarse grained to atomistic models. J. Chem. Theory Comput. 2014, 10, 676–690. [Google Scholar] [CrossRef] [Green Version]
- López, C.A.; De Vries, A.H.; Marrink, S.J. Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci. Rep. 2013, 3, 2071. [Google Scholar] [CrossRef] [Green Version]
- Tuckerman, M.; Berne, B.J.; Martyna, G.J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 1992, 97, 1990–2001. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Izaguirre, J.A.; Skeel, R.D. Verlet-I/r-RESPA/Impulse is limited by nonlinear instabilities. SIAM J. Sci. Comput. 2003, 24, 1951–1973. [Google Scholar] [CrossRef]
- Sidler, D.; Lehner, M.; Frasch, S.; Cristófol-Clough, M.; Riniker, S. Density artefacts at interfaces caused by multiple time-step effects in molecular dynamics simulations. F1000Research 2018, 7. [Google Scholar] [CrossRef]
- Reißer, S.; Poger, D.; Stroet, M.; Mark, A.E. Real cost of speed: The effect of a time-saving multiple-time-stepping algorithm on the accuracy of molecular dynamics simulations. J. Chem. Theory Comput. 2017, 13, 2367–2372. [Google Scholar] [CrossRef] [PubMed]
- Feenstra, K.A.; Hess, B.; Berendsen, H.J. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 1999, 20, 786–798. [Google Scholar] [CrossRef]
- Luviano, A.S.; Hernández-Pascacio, J.; Ondo, D.; Campbell, R.A.; Piñeiro, Á.; Campos-Teránb, J.; Costas, M. Highly Viscoelastic Films at the Water/Air Interface: α-Cyclodextrin with anionic surfactants. J. Colloid Interface Sci. in press. [CrossRef] [PubMed]
- Hopkins, C.W.; Le Grand, S.; Walker, R.C.; Roitberg, A.E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. [Google Scholar] [CrossRef] [PubMed]
- Balusek, C.; Hwang, H.; Lau, C.H.; Lundquist, K.; Hazel, A.; Pavlova, A.; Lynch, D.L.; Reggio, P.H.; Wang, Y.; Gumbart, J.C. Accelerating membrane simulations with Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2019, 15, 4673–4686. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, N.M.; Gilson, M.K. Evaluating force field performance in thermodynamic calculations of cyclodextrin host–guest binding: Water models, partial charges, and host force field parameters. J. Chem. Theory Comput. 2017, 13, 4253–4269. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Peng, Y.; Yan, Y.; Deng, M.; Wang, Y.; Huang, J. “Annular Ring” microtubes formed by SDS@ 2β-CD complexes in aqueous solution. Soft Matter 2010, 6, 1731–1736. [Google Scholar] [CrossRef]
- Jiang, L.; Peng, Y.; Yan, Y.; Huang, J. Aqueous self-assembly of SDS@ 2 β-CD complexes: Lamellae and vesicles. Soft Matter 2011, 7, 1726–1731. [Google Scholar] [CrossRef]
- Mathapa, B.G.; Paunov, V.N. Cyclodextrin stabilised emulsions and cyclodextrinosomes. Phys. Chem. Chem. Phys. 2013, 15, 17903–17914. [Google Scholar] [CrossRef] [Green Version]
- Mathapa, B.G.; Paunov, V.N. Fabrication of viable cyborg cells with cyclodextrin functionality. Biomater. Sci. 2014, 2, 212–219. [Google Scholar] [CrossRef]
- Tanford, C. The hydrophobic effect and the organization of living matter. Science 1978, 200, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Fandiño, R.; Piñeiro, A.; Trick, J.L.; Sansom, M.S. Lipid bilayer membrane perturbation by embedded nanopores: A simulation study. ACS Nano 2016, 10, 3693–3701. [Google Scholar] [CrossRef] [PubMed]
- Laage, D.; Elsaesser, T.; Hynes, J.T. Water dynamics in the hydration shells of biomolecules. Chem. Rev. 2017, 117, 10694–10725. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, A.R.; Cannistraro, S. Molecular dynamics of water at the Protein—Solvent interface. J. Phys. Chem. B 2002, 106, 6617–6633. [Google Scholar] [CrossRef]
- Jana, M.; Bandyopadhyay, S. Hydration Properties of α-, β-, and γ-Cyclodextrins from Molecular Dynamics Simulations. J. Phys. Chem. B 2011, 115, 6347–6357. [Google Scholar] [CrossRef]
- Bottari, C.; Comez, L.; Paolantoni, M.; Corezzi, S.; D’Amico, F.; Gessini, A.; Masciovecchio, C.; Rossi, B. Hydration properties and water structure in aqueous solutions of native and modified cyclodextrins by UV Raman and Brillouin scattering. J. Raman Spectrosc. 2018, 49, 1076–1085. [Google Scholar] [CrossRef]
- Jana, M.; Bandyopadhyay, S. Vibrational spectrum of water confined in and around cyclodextrins. Chem. Phys. Lett. 2011, 509, 181–185. [Google Scholar] [CrossRef]
- Schmid, N.; Eichenberger, A.P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A.E.; van Gunsteren, W.F. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 2011, 40, 843. [Google Scholar] [CrossRef]
- Ponder, J.W.; Case, D.A. Force fields for protein simulations. In Advances in Protein Chemistry; Daggett, V., Ed.; Academic Press: Cambridge, MA, USA, 2003; Volume 66, pp. 27–85. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.; Postma, J.P.; van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration. In Intermolecular Forces; Pullman, B., Ed.; Springer: Dordrecht, The Netherlands, 1981; Volume 14, pp. 331–342. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Brocos, P.; Díaz-Vergara, N.; Banquy, X.; Pérez-Casas, S.; Costas, M.; Pineiro, A. Similarities and Differences between Cyclodextrin—Sodium Dodecyl Sulfate Host—Guest Complexes of Different Stoichiometries: Molecular Dynamics Simulations at Several Temperatures. J. Phys. Chem. B 2010, 114, 12455–12467. [Google Scholar] [CrossRef]
- Berendsen, H.J.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Hockney, R.W.; Eastwood, J.W. Computer Simulation Using Particles, 1st ed.; CRC Press: Boca Raton, FL, USA, 1988. [Google Scholar] [CrossRef]
- Miyamoto, S.; Kollman, P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Mixcoha, E.; Campos-Terán, J.; Piñeiro, A. Surface adsorption and bulk aggregation of cyclodextrins by computational molecular dynamics simulations as a function of temperature: α-CD vs. β-CD. J. Phys. Chem. B 2014, 118, 6999–7011. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 247260. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general AMBER force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Madura, J.D. Temperature and size dependence for monte carlo simulations of TIP4P water. Mol. Phys. 1985, 56, 1381–1392. [Google Scholar] [CrossRef]
- Gowers, R.J.; Linke, M.; Barnoud, J.; Reddy, T.J.E.; Melo, M.N.; Seyler, S.L.; Domanski, J.; Dotson, D.L.; Buchoux, S.; Kenney, I.M.; et al. MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations. In Proceedings of the 15th Python in Science Conference, Austin, TX, USA, 11 July 2016; Benthall, S., Rostrup, S., Eds.; SciPy: Austin, TX, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Michaud-Agrawal, N.; Denning, E.J.; Woolf, T.B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.; Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, S.M.; Takaha, T. Structures of the common cyclodextrins and their larger analogues—Beyond the doughnut. Chem. Rev. 1998, 98, 1787–1802. [Google Scholar] [CrossRef] [PubMed]
Donor/Acceptor | G_2 | HMR_2 | HMR_7 | H2Q_2 | H2Q_7 | AMBER RESP | AMBER BB-RESP | AMBER BB-AM1 |
---|---|---|---|---|---|---|---|---|
CD1-CD2 | 9.37 (41.01) | 9.37 (41.00) | 9.47 (148.42) | 9.40 (41.75) | 9.42 (145.47) | 5.87 (20.56) | 5.45 (37.61) | 4.85 (18.21) |
O2H2 (CD1)-O3H3 (CD2) | 4.55 (37.78) | 4.52 (37.87) | 4.60 (138.35) | 4.56 (38.63) | 4.59 (137.23) | 2.58 (21.42) | 1.57 (41.36) | 1.96 (18.64) |
O2H2 (CD2)- O3H3 (CD1) | 4.76 (44.37) | 4.74 (43.93) | 4.77 (158.85) | 4.74 (44.78) | 4.74 (153.70) | 2.60 (21.51) | 1.59 (42.60) | 1.93 (18.81) |
CD1-CD1 | 5.87 (852) | 5.82 (856) | 5.86 (2624) | 5.85 (849) | 5.87 (2696) | 5.80 (250.07) | 5.46 (145.83) | 5.73 (210.60) |
O3H3 (CD1)- O2H2 (CD1) | 5.87 (856) | 5.82 (859) | 5.86 (2631) | 5.85 (853) | 5.87 (2701) | 5.77 (291.50) | 5.43 (155.73) | 5.71 (227.72) |
CD1-SDS | 1.48 (52.26) | 1.35 (53.58) | 1.39 (93.65) | 1.55 (52.70) | 1.41 (89.89) | 2.02 (17.98) | 0.89 (19.63) | 2.55 (21.00) |
CD2-CD2 | 5.94 (1640) | 5.93 (1437) | 5.92 (4484) | 5.92 (1678) | 5.92 (4586) | 5.89 (310.17) | 5.66 (209.38) | 5.81 (233.32) |
O3H3 (CD2)- O2H2 (CD2) | 5.94 (1645) | 5.93 (1444) | 5.92 (4494) | 5.92 (1678) | 5.92 (4607) | 5.84 (400.60) | 5.64 (223.52) | 5.76 (271.77) |
O2H2 (CD1)-water | 2.32 (6.90) | 2.37 (7.03) | 2.36 (19.47) | 2.34 (6.95) | 2.33 (19.35) | 3.45 (7.49) | 4.41 (9.72) | 3.14 (7.94) |
O2H2 (CD2)-water | 1.97 (6.45) | 1.95 (6.54) | 2.01 (19.09) | 1.99 (6.65) | 2.01 (19.11) | 3.18 (7.24) | 3.91 (9.45) | 2.89 (7.85) |
O3H3 (CD1)-water | 1.40 (6.23) | 1.43 (6.35) | 1.38 (18.64) | 1.39 (6.24) | 1.39 (18.73) | 2.98 (6.99) | 3.29 (8.39) | 3.26 (7.45) |
O3H3 (CD2)-water | 1.19 (5.87) | 1.17 (5.82) | 1.18 (18.30) | 1.21 (5.85) | 1.20 (18.43) | 2.72 | 2.98 (8.27) | 3.00 (7.48) |
(7.06) | ||||||||
O5 (CD1)-water | 1.93 (6.60) | 1.93 (6.62) | 1.98 (18.79) | 1.95 (6.75) | 1.97 (18.77) | 2.80 (6.50) | 4.67 (9.43) | 2.78 (6.80) |
O5 (CD2)-water | 1.63 (6.47) | 1.60 (6.43) | 1.64 (18.67) | 1.62 (6.50) | 1.62 (18.74) | 2.42 (6.33) | 4.40 (9.28) | 2.32 (6.55) |
O6H6 (CD2)-water | 12.44 (14.49) | 12.46 (14.76) | 12.56 (27.73) | 12.45 (14.82) | 12.52 (28.27) | 9.71 (7.48) | 10.96 (7.96) | 9.53 (7.69) |
O6H6 (CD1)-water | 11.59 (12.16) | 11.68 (12.36) | 11.73 (24.84) | 11.50 (12.30) | 11.72 (24.87) | 10.72 (8.16) | 11.31 (8.75) | 10.99 (8.32) |
SDS-water | 3.69 (12.35) | 3.74 (12.53) | 3.74 (25.70) | 3.63 (12.38) | 3.72 (25.67) | 3.53 (8.96) | 3.75 (11.35) | 3.37 (8.64) |
Donor/Acceptor | G_2 | HMR_2 | HMR_7 | H2Q_2 | H2Q_7 | AMBER RESP | AMBER BB-RESP | AMBER BB-AM1 |
---|---|---|---|---|---|---|---|---|
CD1-CD2 | 9.64 (46.60) | 9.65 (46.58) | 9.71 (166.19) | 9.61 (45.75) | 9.67 (163.43) | 5.87 (20.50) | 5.40 (36.66) | 4.86 (18.81) |
O2H2 (CD1)-O3H3 (CD2) | 4.71 (42.81) | 4.72 (42.66) | 4.76 (155.15) | 4.69 (42.10) | 4.70 (147.75) | 2.55 (21.27) | 1.61 (39.79) | 1.98 (19.66) |
O2H2 (CD2)- O3H3 (CD1) | 4.90 (50.71) | 4.91 (50.94) | 4.93 (178.41) | 4.89 (49.77) | 4.93 (181.16) | 2.64 (21.37) | 1.54 (41.16) | 1.98 (19.21) |
CD1-CD1 | 5.91 (1248) | 5.92 (1381) | 5.93 (3852) | 5.91 (1298) | 5.90 (3662) | 5.79 (244.78) | 5.47 (151.57) | 5.73 (208.11) |
O3H3 (CD1)- O2H2 (CD1) | 5.91 (1262) | 5.92 (1398) | 5.93 (3878) | 5.91 (1311) | 5.90 (3695) | 5.76 (284.60) | 5.45 (160.66) | 5.71 (223.89) |
CD1-SDS | 2.09 (47.35) | 1.89 (48.18) | 1.99 (104.61) | 2.05 (56.39) | 2.16 (93.78) | 1.96 (18.15) | 1.01 (19.74) | 2.25 (20.96) |
CD2-CD2 | 5.96 (1989) | 5.97 (2505) | 5.96 (5624) | 5.96 (2144) | 5.97 (8040) | 5.89 (318.85) | 5.56 (182.09) | 5.82 (251.10) |
O3H3 (CD2)- O2H2 (CD2) | 5.96 (2117) | 5.96 (2632) | 5.96 (5869) | 5.96 (2307) | 5.96 (8421) | 5.84 (411.09) | 5.54 (191.28) | 5.78 (289.62) |
O2H2 (CD1)-water | 2.51 (6.17) | 2.39 (6.19) | 2.76 (18.49) | 2.34 (6.22) | 2.28 (18.77) | 3.51 (7.42) | 4.53 | 3.17 (7.79) |
(9.77) | ||||||||
O2H2 (CD2)-water | 2.24 (5.85) | 2.16 (5.88) | 2.52 (18.24) | 2.08 (5.99) | 2.03 (18.43) | 3.23 (7.25) | 3.97 | 3.00 (7.86) |
(9.35) | ||||||||
O3H3 (CD1)-water | 1.87 (5.62) | 1.72 (5.65) | 2.10 (18.04) | 1.67 (5.68) | 1.62 (18.24) | 2.99 (7.03) | 3.37 | 3.33 (7.52) |
(8.28) | ||||||||
O3H3 (CD2)-water | 1.72 (5.45) | 1.61 (5.44) | 1.99 (17.94) | 1.51 (5.48) | 1.49 (17.95) | 2.79 (6.89) | 2.99 | 3.07 (7.36) |
(8.23) | ||||||||
O4 (CD1)-water | 0.56 (5.10) | 0.47 (5.09) | 0.69 (17.75) | 0.39 (5.09) | 0.40 (17.53) | -- | -- | -- |
O4 (CD2)-water | 0.55 (5.10) | 0.50 (5.08) | 0.68 (17.50) | 0.44 (5.09) | 0.40 (17.58) | -- | -- | -- |
O5 (CD1)-water | 2.05 (6.07) | 2.01 (6.13) | 2.27 (18.26) | 1.97 (6.10) | 1.94 (18.41) | 2.83 (6.48) | 4.70 | 2.82 (6.84) |
(9.44) | ||||||||
O5 (CD2)-water | 1.82 (5.95) | 1.75 (6.01) | 1.98 (18.07) | 1.68 (5.94) | 1.68 (18.40) | 2.46 (6.26) | 4.46 | 2.37 (6.45) |
(9.07) | ||||||||
O6H6 (CD2)-water | 11.33 (11.89) | 11.36 (12.13) | 11.74 (24.99) | 11.24 (12.12) | 11.12 (25.27) | 9.83 (7.48) | 10.98 (7.90) | 9.80 (7.65) |
O6H6 (CD1)-water | 12.79 (15.68) | 12.70 (15.83) | 12.95 (31.75) | 12.74 (15.83) | 12.65 (32.11) | 10.89 (8.13) | 11.55 (8.55) | 11.17 (8.27) |
SDS-water | 3.49 (11.01) | 3.59 (11.34) | 3.61 (24.84) | 3.42 (11.13) | 3.34 (25.07) | 3.62 (8.97) | 3.66 (11.18) | 3.62 (8.80) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
F. Garrido, P.; Calvelo, M.; Garcia-Fandiño, R.; Piñeiro, Á. Rings, Hexagons, Petals, and Dipolar Moment Sink-Sources: The Fanciful Behavior of Water around Cyclodextrin Complexes. Biomolecules 2020, 10, 431. https://doi.org/10.3390/biom10030431
F. Garrido P, Calvelo M, Garcia-Fandiño R, Piñeiro Á. Rings, Hexagons, Petals, and Dipolar Moment Sink-Sources: The Fanciful Behavior of Water around Cyclodextrin Complexes. Biomolecules. 2020; 10(3):431. https://doi.org/10.3390/biom10030431
Chicago/Turabian StyleF. Garrido, Pablo, Martín Calvelo, Rebeca Garcia-Fandiño, and Ángel Piñeiro. 2020. "Rings, Hexagons, Petals, and Dipolar Moment Sink-Sources: The Fanciful Behavior of Water around Cyclodextrin Complexes" Biomolecules 10, no. 3: 431. https://doi.org/10.3390/biom10030431
APA StyleF. Garrido, P., Calvelo, M., Garcia-Fandiño, R., & Piñeiro, Á. (2020). Rings, Hexagons, Petals, and Dipolar Moment Sink-Sources: The Fanciful Behavior of Water around Cyclodextrin Complexes. Biomolecules, 10(3), 431. https://doi.org/10.3390/biom10030431