Early Life Stress Is Associated with Alterations in Lymphocyte Subsets Independent of Increased Inflammation in Adolescents
<p>Early life adversity is positively associated with peripheral inflammation. First principal component of IL-6, CRP, and TNF-a was positively and significantly associated with early life stress, controlling for sex, age, total fat percentage, and time of blood draw. PI = previously institutionalized group, NA = non-adopted group.</p> "> Figure 2
<p>Early life adversity was associated with increased IgD− memory B cells and senescent B cells. The presented <span class="html-italic">p</span>-value is from the multiple regression model that controlled for sex, age, total fat percentage, time of blood draw, IL-6, and CRP for: (<b>a</b>) IgD− memory B cells, (<b>b</b>) senescent B cells. PI = previously institutionalized group, NA = non-adopted group.</p> "> Figure 3
<p>Early life stress exposure was associated with fewer Helper T cells and naïve helper T cells and increased effector memory helper T cells. The presented <span class="html-italic">p</span>-value is from the multiple regression model that controlled for sex, age, total fat percentage, time of blood draw, IL-6, and CRP for (<b>a</b>) helper T cells, (<b>b</b>) effector memory helper T cells, and (<b>c</b>) naïve helper T cells. PI = previously institutionalized group, NA = non-adopted group.</p> "> Figure 4
<p>Early life stress exposure was associated with fewer naive cytotoxic T cells and effector memory cytotoxic T cells. The presented <span class="html-italic">p</span>-value is from the multiple regression model that controlled for sex, age, total fat percentage, time of blood draw, IL-6, and CRP for (<b>a</b>) naive cytotoxic T cells and (<b>b</b>) effector memory cytotoxic T cells. PI = previously institutionalized group, NA = non-adopted group.</p> "> Figure 5
<p>Early life stress exposure was associated with more senescent T cells. The presented <span class="html-italic">p</span>-value is from the multiple regression model that controlled for sex, age, total fat percentage, time of blood draw, IL-6, and CRP. PI = previously institutionalized group, NA = non-adopted group.</p> ">
Abstract
:1. Introduction
Immune Senescence and Early Life Stress
2. Materials and Methods
2.1. Participants
2.2. Protocols and Measures
2.2.1. Immune and Inflammatory Measures
Immunophenotyping
Gating Strategy
2.2.2. Covariates
2.3. Statistical Approach
Analytical Approach
3. Results
3.1. Group Differences in CMV
3.2. Dimensionality of IL6, CRP, and TNF-a
3.3. Lymphocyte Subset Analyses
3.4. B Cells
3.5. T Cells
3.5.1. Helper T Cells
3.5.2. Cytotoxic T Cells
3.5.3. Regulatory T Cells
3.5.4. Senescent T Cells
3.6. Natural Killer T Cells
3.7. Sensitivity Analyses
4. Discussion
4.1. Inflammation
4.2. Cell Subsets
4.2.1. B Lymphocytes
4.2.2. T Lymphocytes
4.2.3. NK Cells
4.2.4. Cytomegalovirus (CMV) Exposure
4.3. Limitations
4.4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, D.W.; Anda, R.F.; Tiemeier, H.; Felitti, V.J.; Edwards, V.J.; Croft, J.B.; Giles, W.H. Adverse childhood experiences and the risk of premature mortality. Am. J. Prev. Med. 2009, 37, 389–396. [Google Scholar] [CrossRef]
- Shonkoff, J.P.; Boyce, W.T.; McEwen, B.S. Neuroscience, molecular biology, and the childhood roots of health disparities: Building a new framework for health promotion and disease prevention. JAMA 2009, 301, 2252–2259. [Google Scholar] [CrossRef]
- Madigan, S.; Deneault, A.A.; Racine, N.; Park, J.; Thiemann, R.; Zhu, J.; Dimitropoulos, G.; Williamson, T.; Fearon, P.; Cénat, J.M.; et al. Adverse childhood experiences: A meta-analysis of prevalence and moderators among half a million adults in 206 studies. World Psychiatry 2023, 22, 463–471. [Google Scholar] [CrossRef]
- Kessler, R.C.; McLaughlin, K.A.; Green, J.G.; Gruber, M.J.; Sampson, N.A.; Zaslavsky, A.M.; Aguilar-Gaxiola, S.; Alhamzawi, A.O.; Alonso, J.; Angermeyer, M.; et al. Childhood adversities and adult psychopathology in the WHO World Mental Health Surveys. Br. J. Psychiatry 2010, 197, 378–385. [Google Scholar] [CrossRef]
- Shonkoff, J.P.; Garner, A.S.; Committee on Psychosocial Aspects of Child and Family Health; Committee on Early Childhood, Adoption, and Dependent Care; Section on Developmental and Behavioral Pediatrics. The lifelong effects of early childhood adversity and toxic stress. Pediatrics 2012, 129, e232–e246. [Google Scholar] [CrossRef]
- Gunnar, M.; Reid, B.M. Early Deprivation Revisited: Contemporary Studies of the Impact on Young Children of Institutional Care. Annu. Rev. Dev. Psychol. 2019, 1, 93–118. [Google Scholar] [CrossRef]
- Miller, G.E.; Chen, E.; Parker, K.J. Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychol. Bull. 2011, 137, 959–997. [Google Scholar] [CrossRef]
- Elwenspoek, M.C.; Kuehn, A.; Muller, C.P.; Turner, J.D. The effects of early life adversity on the immune system. Psychoneuroendocrinology 2017, 82, 140–154. [Google Scholar] [CrossRef]
- Slopen, N.; Loucks, E.B.; Appleton, A.A.; Kawachi, I.; Kubzansky, L.D.; Non, A.L.; Buka, S.; Gilman, S.E. Early origins of inflammation: An examination of prenatal and childhood social adversity in a prospective cohort study. Psychoneuroendocrinology 2015, 51, 403–413. [Google Scholar] [CrossRef]
- Barbé-Tuana, F.; Funchal, G.; Schmitz, C.R.R.; Maurmann, R.M.; Bauer, M.E. The interplay between immunosenescence and age-related diseases. Semin. Immunopathol. 2020, 42, 545–557. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging: An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, S4–S9. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Biasucci, L.M.; La Rosa, G.; Pedicino, D.; D’Aiello, A.; Galli, M.; Liuzzo, G. Where Does Inflammation Fit? Curr. Cardiol. Rep. 2017, 19, 84. [Google Scholar] [CrossRef]
- Lindqvist, D.; Hall, S.; Surova, Y.; Nielsen, H.M.; Janelidze, S.; Brundin, L.; Hansson, O. Cerebrospinal fluid inflammatory markers in Parkinson’s disease—Associations with depression, fatigue, and cognitive impairment. Brain Behav. Immun. 2013, 33, 183–189. [Google Scholar] [CrossRef]
- Surtees, P.; Wainwright, N.; Day, N.; Brayne, C.; Luben, R.; Khaw, K.T. Adverse experience in childhood as a developmental risk factor for altered immune status in adulthood. Int. J. Behav. Med. 2003, 10, 251–268. [Google Scholar] [CrossRef]
- Baumeister, D.; Akhtar, R.; Ciufolini, S.; Pariante, C.M.; Mondelli, V. Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-alpha. Mol. Psychiatry 2016, 21, 642–649. [Google Scholar] [CrossRef]
- Reid, B.; Danese, A. Challenges in researching the immune pathways between early life adversity and psychopathology. Dev. Psychopathol. 2020, 32, 1597–1624. [Google Scholar] [CrossRef]
- Kuhlman, K.R.; Horn, S.R.; Chiang, J.J.; Bower, J.E. Early life adversity exposure and circulating markers of inflammation in children and adolescents: A systematic review and meta-analysis. Brain Behav. Immun. 2020, 86, 30–42. [Google Scholar] [CrossRef]
- Belsky, D.W.; Caspi, A.; Cohen, H.J.; Kraus, W.E.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Impact of early personal-history characteristics on the Pace of Aging: Implications for clinical trials of therapies to slow aging and extend healthspan. Aging Cell 2017, 16, 644–651. [Google Scholar] [CrossRef]
- Felitti, V.J.; Anda, R.F.; Nordenberg, D.; Williamson, D.F.; Spitz, A.M.; Edwards, V.; Koss, M.P.; Marks, J.S. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults—The adverse childhood experiences (ACE) study. Am. J. Prev. Med. 1998, 14, 245–258. [Google Scholar] [CrossRef]
- Hayward, M.D.; Gorman, B.K. The long arm of childhood: The influence of early-life social conditions on men’s mortality. Demography 2004, 41, 87–107. [Google Scholar] [CrossRef]
- Gruver, A.L.; Hudson, L.L.; Sennpowski, G.D. Immunosenescence of ageing. J. Pathol. 2007, 211, 144–156. [Google Scholar] [CrossRef]
- Pawelec, G. Does the human immune system ever really become “senescent”? F1000Research 2017, 6, 1323. [Google Scholar] [CrossRef]
- Oh, S.J.; Lee, J.K.; Shin, O.S. Aging and the Immune System: The Impact of Immunosenescence on Viral Infection, Immunity and Vaccine Immunogenicity. Immune Netw. 2019, 19, e37. [Google Scholar] [CrossRef]
- Weiskopf, D.; Weinberger, B.; Grubeck-Loebenstein, B. The aging of the immune system. Transpl. Int. 2009, 22, 1041–1050. [Google Scholar] [CrossRef]
- Castelo-Branco, C.; Soveral, I. The immune system and aging: A review. Gynecol. Endocrinol. 2014, 30, 16–22. [Google Scholar] [CrossRef]
- Crooke, S.N.; Ovsyannikova, I.G.; Poland, G.A.; Kennedy, R.B. Immunosenescence and human vaccine immune responses. Immun. Ageing 2019, 16, 25. [Google Scholar] [CrossRef]
- Ramasubramanian, R.; Meier, H.C.S.; Vivek, S.; Klopack, E.; Crimmins, E.M.; Faul, J.; Nikolich-Zugich, J.; Thyagarajan, B. Evaluation of T-cell aging-related immune phenotypes in the context of biological aging and multimorbidity in the Health and Retirement Study. Immun. Ageing 2022, 19, 33. [Google Scholar] [CrossRef]
- Seshadri, G.; Vivek, S.; Prizment, A.; Crimmins, E.M.; Klopack, E.T.; Faul, J.; Guan, W.H.; Meier, H.C.S.; Thyagarajan, B. Immune cells are associated with mortality: The Health and Retirement Study. Front. Immunol. 2023, 14, 1280144. [Google Scholar] [CrossRef]
- Provinciali, M.; Moresi, R.; Donnini, A.; Lisa, R.M. Reference Values for CD4+ and CD8+T Lymphocytes with Naive or Memory Phenotype and Their Association with Mortality in the Elderly. Gerontology 2009, 55, 314–321. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Hu, L.; Xuan, J.C.; Qu, Y.F.; Li, Y.X.; Ye, X.H.; Yang, L.; Yang, J.; Zhang, X.Q.; et al. Predictive Value of Immune Cell Subsets for Mortality Risk in Patients with Sepsis. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211059498. [Google Scholar] [CrossRef]
- Xiang, F.F.; Chen, R.Y.; Cao, X.S.; Shen, B.; Chen, X.H.; Ding, X.Q.; Zou, J.Z. Premature aging of circulating T cells predicts all-cause mortality in hemodialysis patients. BMC Nephrol. 2020, 21, 271. [Google Scholar] [CrossRef]
- Molina, M.; Allende, L.M.; Ramos, L.E.; Gutiérrez, E.; Pleguezuelo, D.E.; Hernández, E.R.; Ríos, F.; Fernández, C.; Praga, M.; Morales, E. CD19+ B-Cells, a new biomarker of mortality in hemodialysis patients. Front. Immunol. 2018, 9, 1221. [Google Scholar] [CrossRef]
- Li, D.Z.; Chen, Y.; Liu, H.; Jia, Y.; Li, F.H.; Wang, W.; Wu, J.; Wan, Z.; Cao, Y.; Zeng, R. Immune dysfunction leads to mortality and organ injury in patients with COVID-19 in China: Insights from ERS-COVID-19 study. Signal Transduct. Target. Ther. 2020, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Ader, R.; Friedman, S.B. Differential early experiences and susceptibility to transplanted tumor in rat. J. Comp. Physiol. Psychol. 1965, 59, 361. [Google Scholar] [CrossRef]
- Solomon, G.F.; Levine, S.; Kraft, J.K. Early Experience and Immunity. Nature 1968, 220, 821–822. [Google Scholar] [CrossRef]
- Ader, R. Developmental psychoneuroimmunology. Dev. Psychobiol. 1983, 16, 251–267. [Google Scholar] [CrossRef]
- Ader, R. On the development of psychoneuroimmunology. Eur. J. Pharmacol. 2000, 405, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Laudenslager, M.; Capitanio, J.P.; Reite, M. Possible effects of early separation experiences on subsequent immune function in adult macaque monkeys. Am. J. Psychiatry 1985, 142, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.H.; Gluck, J.P.; Petitto, J.M.; Hensley, L.L.; Ozer, H. Early social deprivation in nonhuman primates: Long-term effects on survival and cell-mediated immunity. Biol. Psychiatry 2000, 47, 119–126. [Google Scholar] [CrossRef]
- Coe, C.L.; Laudenslager, M.L. Psychosocial influences on immunity, including effects on immune maturation and senescence. Brain Behav. Immun. 2007, 21, 1000–1008. [Google Scholar] [CrossRef]
- Tang, A.; Slopen, N.; Nelson, C.A.; Zeanah, C.H.; Georgieff, M.K.; Fox, N.A. Catch-up growth, metabolic, and cardiovascular risk in post-institutionalized Romanian adolescents. Pediatr. Res. 2018, 84, 842–848. [Google Scholar] [CrossRef]
- Elwenspoek, M.M.C.; Hengesch, X.; Leenen, F.A.D.; Schritz, A.; Sias, K.; Schaan, V.K.; Meriaux, S.B.; Schmitz, S.; Bonnemberger, F.; Schachinger, H.; et al. Proinflammatory T Cell Status Associated with Early Life Adversity. J. Immunol. 2017, 199, 4046–4055. [Google Scholar] [CrossRef]
- Engel, M.L.; Coe, C.L.; Reid, B.M.; Donzella, B.; Gunnar, M.R. Selective inflammatory propensities in adopted adolescents institutionalized as infants. Psychoneuroendocrinology 2021, 124, 105065. [Google Scholar] [CrossRef]
- Esposito, E.A.; Jones, M.J.; Doom, J.R.; MacIsaac, J.L.; Gunnar, M.R.; Kobor, M.S. Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. Dev. Psychopathol. 2016, 28, 1385–1399. [Google Scholar] [CrossRef]
- Reid, B.M.; Coe, C.L.; Doyle, C.M.; Sheerar, D.; Slukvina, A.; Donzella, B.; Gunnar, M.R. Persistent skewing of the T-cell profile in adolescents adopted internationally from institutional care. Brain Behav. Immun. 2019, 77, 168–177. [Google Scholar] [CrossRef]
- Shirtcliff, E.A.; Coe, C.L.; Pollak, S.D. Early childhood stress is associated with elevated antibody levels to herpes simplex virus type 1. Proc. Natl. Acad. Sci. USA 2009, 106, 2963–2967. [Google Scholar] [CrossRef]
- Elwenspoek, M.M.C.; Sias, K.; Hengesch, X.; Schaan, V.K.; Leenen, F.A.D.; Adams, P.; Meriaux, S.B.; Schmitz, S.; Bonnemberger, F.; Ewen, A.; et al. T Cell Immunosenescence after Early Life Adversity: Association with Cytomegalovirus Infection. Front. Immunol. 2017, 8, 1263. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Miller, G.E.; Blackwell, E. Turning Up the Heat. Curr. Dir. Psychol. Sci. 2006, 15, 269–272. [Google Scholar] [CrossRef]
- Gunnar, M.R.; DePasquale, C.E.; Reid, B.M.; Donzella, B.; Miller, B.S. Pubertal stress recalibration reverses the effects of early life stress in postinstitutionalized children. Proc. Natl. Acad. Sci. USA 2019, 116, 23984–23988. [Google Scholar] [CrossRef]
- Glaser, R.; Kiecolt-Glaser, J.K. Science and society-Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 2005, 5, 243–251. [Google Scholar] [CrossRef]
- Phillips, A.C.; Carroll, D.; Gale, C.R.; Drayson, M.; Batty, G.D. Lymphocyte cell counts in middle age are positively associated with subsequent all-cause and cardiovascular mortality. QJM Int. J. Med. 2011, 104, 319–324. [Google Scholar] [CrossRef]
- Rudy, B.J.; Wilson, C.M.; Durako, S.; Moscicki, A.-B.; Muenz, L.; Douglas, S.D. Peripheral Blood Lymphocyte Subsets in Adolescents: A Longitudinal Analysis from the REACH Project. Clin. Vaccine Immunol. 2002, 9, 959–965. [Google Scholar] [CrossRef]
- Valiathan, R.; Ashman, M.; Asthana, D. Effects of Ageing on the Immune System: Infants to Elderly. Scand. J. Immunol. 2016, 83, 255–266. [Google Scholar] [CrossRef]
- Desdín-Micó, G.; Soto-Heredero, G.; Aranda, J.F.; Oller, J.; Carrasco, E.; Gabandé-Rodríguez, E.; Blanco, E.M.; Alfranca, A.; Cussó, L.; Desco, M.; et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 2020, 368, 1371–1376. [Google Scholar] [CrossRef]
- Mittelbrunn, M.; Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 2021, 22, 687–698. [Google Scholar] [CrossRef]
- Miller, J. The function of the thymus and its impact on modern medicine. Science 2020, 369, eaba2429. [Google Scholar] [CrossRef]
- Elyahu, Y.; Monsonego, A. Thymus involution sets the clock of the aging T-cell landscape: Implications for declined immunity and tissue repair. Ageing Res. Rev. 2021, 65, 101231. [Google Scholar] [CrossRef]
- Thapa, P.; Farber, D.L. The Role of the Thymus in the Immune Response. Thorac. Surg. Clin. 2019, 29, 123–131. [Google Scholar] [CrossRef]
- Wood, E.K.; Reid, B.M.; Sheerar, D.S.; Donzella, B.; Gunnar, M.R.; Coe, C.L. Lingering effects of early institutional rearing and cytomegalovirus infection on the natural killer cell repertoire of adopted adolescents. Biomolecules, 2024; submitted. [Google Scholar]
- Veru, F.; Dancause, K.; Laplante, D.P.; King, S.; Luheshi, G. Prenatal maternal stress predicts reductions in CD4+ lymphocytes, increases in innate-derived cytokines, and a Th2 shift in adolescents: Project Ice Storm. Physiol. Behav. 2015, 144, 137–145. [Google Scholar] [CrossRef]
- Staras, S.A.; Dollard, S.C.; Radford, K.W.; Flanders, W.D.; Pass, R.F.; Cannon, M.J. Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin. Infect. Dis. 2006, 43, 1143–1151. [Google Scholar] [CrossRef]
- Coe, C.L.; Lubach, G.R. Prenatal origins of individual variation in behavior and immunity. Neurosci. Biobehav. Rev. 2005, 29, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Veru, F.; Laplante, D.P.; Luheshi, G.; King, S. Prenatal maternal stress exposure and immune function in the offspring. Stress 2014, 17, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Aschbacher, K.; Hagan, M.; Steine, I.M.; Rivera, L.; Cole, S.; Baccarella, A.; Epel, E.S.; Lieberman, A.; Bush, N.R. Adversity in early life and pregnancy are immunologically distinct from total life adversity: Macrophage-associated phenotypes in women exposed to interpersonal violence. Transl. Psychiatry 2021, 11, 391. [Google Scholar] [CrossRef] [PubMed]
Non-Adopted (N = 96) | Adopted (N = 95) | Group Difference (p-Value of t-Test or chi-Square) | |
---|---|---|---|
Age (years) | 14.7 ± 2.32 | 15.9 ± 2.40 | <0.001 |
Missing | 1 (1.0%) | 2 (2.1%) | |
Female | 50 (52.1%) | 60 (63.2%) | n.s. |
Primary caregiver educational attainment | n.s. | ||
High School Degree or GED | 2 (2.2%) | 0 (0%) | |
Some College, Community college or 2 year degree | 10 (10.4%) | 1 (1.1%) | |
4 year degree | 28 (29.2%) | 28 (29.5%) | |
Some graduate School or Advanced degree | 53 (55.2) | 65 (68.4%) | |
Unreported | 3 (3.1%) | 1 (1.1%) | |
Total household income | n.s. | ||
<USD 85,000 | 16 (16.7%) | 13 (13.7%) | |
USD 85,001–USD 100,000 | 10 (10.4%) | 8 (8.4%) | |
USD 100,001–USD 150,000 | 22 (22.9%) | 18 (18.9%) | |
USD 150,001–USD 200,000 | 14 (14.6%) | 27 (28.4%) | |
>USD 200,000 | 29 (30.2%) | 28 (29.5%) | |
Missing | 5 (5.2%) | 1 (1.1%) | |
Child reported ethnicity | p < 0.001 | ||
Hispanic or Latinx | 3 (3.1%) | 20 (21.1%) | |
Not Hispanic or Latinx | 86 (89.6%) | 67 (70.5%) | |
Unknown | 1 (1%) | 4 (4.2%) | |
Missing | 6 (6.3%) | 4 (4.2%) | |
Adoptive Region of Origin | – | ||
Central America and the Caribbean | - | 7 (7.4%) | |
East, West, and Central Africa | - | 13 (13.7%) | |
Eastern Asia | - | 30 (31.6%) | |
Eastern Europe | - | 14 (14.7%) | |
South America | - | 16 (16.8%) | |
Southeast and South–Central Asia | - | 14 (14.7%) | |
Unreported | - | 1 (1.1%) | |
Child reported race | <0.001 | ||
Indigenous to the Americas | 1 (1.0%) | 14 (14.7%) | |
Asian | 3 (3.1%) | 45 (47.4%) | |
Black | 2 (2.1%) | 13 (13.7%) | |
White | 78 (81.3%) | 15 (15.8%) | |
More than 1 race | 11 (11.5%) | 6 (6.3%) | |
Unreported | 0 (0%) | 1 (1.1%) | |
Missing | 1 (1%) | 1 (1.1%) | |
Age at adoption (months) | - | 16.1 ± 11.9 | - |
Months spent in institutional care | - | 14.2 ± 10.7 | - |
Missing | - | 10 (10.5%) | - |
Body Mass Index (BMI) | 21.4 ± 4.94 | 22.7 ± 5.86 | n.s. |
Missing | 1 (1.0%) | 0 (0%) | |
Total Adipose Tissue (%) | 27.8 ± 8.5 | 29.8 ± 9.1 | n.s. |
Missing | 1 (1%) | 2 (2.1%) | |
No known allergies (self-report) | 72 (75.8%) | 71 (74.3%) | n.s. |
Missing | 1 (1%) | 0 (0%) | |
Fasted at blood draw | 88 (91.7%) | 80 (84.2%) | 0.044 |
Missing | 4 (4.2%) | 2 (2.1%) | |
Time of blood draw (HH:MM) | 08:39 ± 1:04 | 08:47 ± 1:01 | n.s. |
Missing | 1 (1.0%) | 0 (0%) | |
CMV Seropositive | 28 (29.2%) | 76 (80.0%) | <0.001 |
Missing | 9 (9.4%) | 5 (5.3%) | |
IL-6 (pgml) | 1.33 ± 1.31 | 1.98 ± 2.08 | 0.013 |
Missing | 8 (8.3%) | 3 (3.2%) | |
TNF-a (pgml) | 10.2 ± 2.15 | 11.1 ± 7.21 | n.s. |
Missing | 8 (8.3%) | 3 (3.2%) | |
CRP (ngml) | 852 ± 1520 | 1440 ± 2200 | 0.038 |
Missing | 8 (8.3%) | 3 (3.2%) |
Cell Subset | Cell Type | Est | SE | t | p-Value d | Cohen’s |
---|---|---|---|---|---|---|
B cells | B lymphocytes | 0.69 | 0.97 | 0.71 | 0.567 | <0.01 |
IgD− memory B cells a | 0.33 | 0.12 | 2.72 | 0.025 * | 0.07 | |
IgD+ memory B cells a | −0.13 | 0.09 | −1.52 | 0.178 | 0.01 | |
Naive B cells | −1.13 | 1.62 | −0.70 | 0.567 | 0.02 | |
Senescent B cells b | 0.08 | 0.03 | 3.09 | 0.013 * | 0.05 | |
T cells | T cells c | −3.77 | 2.17 | −1.74 | 0.152 | 0.01 |
Helper T cells | −3.72 | 1.29 | −2.90 | 0.018 * | 0.06 | |
Central memory naive T cells | 0.33 | 0.66 | 0.50 | 0.680 | 0.01 | |
Effector memory helper T cells | 4.41 | 1.30 | 3.40 | 0.009 * | 0.19 | |
Effector helper T cells a | 0.02 | 0.08 | 0.19 | 0.893 | <0.01 | |
Naive helper T cells | −4.50 | 1.91 | −2.36 | 0.051 t | 0.10 | |
Cytotoxic T cells | Cytotoxic T cells | 2.61 | 1.19 | 2.19 | 0.07 t | 0.04 |
Central memory cytotoxic T cells a | 0.00 | 0.05 | 0.06 | 0.951 | <0.01 | |
Effector cytotoxic T cells | 3.95 | 2.39 | 1.65 | 0.177 | 0.03 | |
Effector memory cytotoxic T cells | 3.03 | 0.96 | 3.17 | 0.013 * | 0.09 | |
Naive cytotoxic T cells | −6.88 | 2.68 | −2.57 | 0.033 * | 0.07 | |
Regulatory T cells | Regulatory T Cells | 0.94 | 0.62 | 1.52 | 0.178 | 0.02 |
Senescent T cells | Senescent T cells a | 0.46 | 0.09 | 4.94 | <0.001 * | 0.19 |
Senescent cytotoxic T cells | 3.61 | 2.29 | 1.58 | 0.178 | 0.04 | |
Senescent helper T cells | 3.20 | 1.52 | 2.11 | 0.077 t | 0.03 | |
Natural Killer T cells | Natural killer T cells a | 0.13 | 0.09 | 1.50 | 0.178 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reid, B.M.; Desjardins, C.; Thyagarajan, B.; Linden, M.A.; Gunnar, M. Early Life Stress Is Associated with Alterations in Lymphocyte Subsets Independent of Increased Inflammation in Adolescents. Biomolecules 2024, 14, 262. https://doi.org/10.3390/biom14030262
Reid BM, Desjardins C, Thyagarajan B, Linden MA, Gunnar M. Early Life Stress Is Associated with Alterations in Lymphocyte Subsets Independent of Increased Inflammation in Adolescents. Biomolecules. 2024; 14(3):262. https://doi.org/10.3390/biom14030262
Chicago/Turabian StyleReid, Brie M., Christopher Desjardins, Bharat Thyagarajan, Michael A. Linden, and Megan Gunnar. 2024. "Early Life Stress Is Associated with Alterations in Lymphocyte Subsets Independent of Increased Inflammation in Adolescents" Biomolecules 14, no. 3: 262. https://doi.org/10.3390/biom14030262
APA StyleReid, B. M., Desjardins, C., Thyagarajan, B., Linden, M. A., & Gunnar, M. (2024). Early Life Stress Is Associated with Alterations in Lymphocyte Subsets Independent of Increased Inflammation in Adolescents. Biomolecules, 14(3), 262. https://doi.org/10.3390/biom14030262