The Effect of Bone Mechanical Stress Caused by Electrical Stimulation-Induced Muscle Contraction on Osteocalcin Secretion
"> Figure 1
<p>Bone strain under (<b>A</b>) 10 Hz, (<b>B</b>) 100 Hz electrical stimulation-induced muscle contraction (ESMC), and (<b>C</b>) the temporal changes of ucOC after a single bout of ESMC intervention. * <span class="html-italic">p</span> < 0.05. (CON, control [n = 6]; LF, low-frequency electrical stimulation [n = 8]; HF, high-frequency electrical stimulation [n = 8]). Values are presented as the mean ± SD.</p> "> Figure 2
<p>The changes in (<b>A</b>) ucOC, (<b>B</b>) insulin levels during the 4-week ESMC intervention, and (<b>C</b>) the correlation between ucOC and insulin levels at all time points. # <span class="html-italic">p</span> < 0.05 vs. pre. (CON, control [n = 6]; LF, low-frequency electrical stimulation [n = 8]; HF, high-frequency electrical stimulation [n = 7]). Values are presented as the mean ± SD.</p> "> Figure 3
<p>Immunohistochemical staining photomicrographs of tibial anterior (TA) muscle for dystrophin in (<b>A</b>) CON, (<b>B</b>) LF, and (<b>C</b>) HF groups, and quantification of mean myofiber cross-sectional area (FCSA) for (<b>D</b>) all sections and (<b>E</b>) deep sections. The scale bar represents 100 μm. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01. (CON, control [n = 6]; LF, low-frequency electrical stimulation [n = 8]; HF, high-frequency electrical stimulation [n = 8]). Values are presented as the mean ± SD.</p> "> Figure 4
<p>The schematic summary of the methodology and research findings. (LF, low-frequency electrical stimulation; HF, high-frequency electrical stimulation; ESMC, electrical stimulation-induced muscle contraction; ucOC, undercarboxylated osteocalcin).</p> ">
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Protocol
2.2. Direct ES Procedures
2.3. Tibia Bone Strain Measurement
2.4. Blood Samples Collection and Measurement
2.5. Muscle Contraction Force Measurement and Muscle Sample Harvest
2.6. Immunohistochemical Analysis
2.7. Statistical Analysis
3. Results
3.1. Bone Strain Induced by ESMC and ucOC Levels after a Single ESMC Session
3.2. UcOC and Muscle Analysis of the Long-Term ESMC Intervention
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Modlin, M.; Forstner, C.; Hofer, C.; Mayr, W.; Richter, W.; Carraro, U.; Protasi, F.; Kern, H. Electrical stimulation of denervated muscles: First results of a clinical study. Artif. Organs 2005, 29, 203–206. [Google Scholar] [CrossRef]
- Kern, H.; Salmons, S.; Mayr, W.; Rossini, K.; Carraro, U. Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle Nerve 2005, 31, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, H.; Yotani, K.; Ogita, F.; Hayao, K.; Kirimto, H.; Onishi, H.; Kasuga, N.; Yamamoto, N. Low-frequency electrical stimulation of denervated skeletal muscle retards muscle and trabecular bone loss in aged rats. Int. J. Med. Sci. 2019, 16, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.V.; Hung, C.Y.; Chen, W.S.; Lai, M.S.; Chien, K.L.; Han, D.S. Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post-injury osteoporosis in spinal cord injury patients—A systematic review and meta-analysis. PLoS ONE 2013, 8, e81124. [Google Scholar] [CrossRef] [PubMed]
- Mera, P.; Laue, K.; Ferron, M.; Confavreux, C.; Wei, J.; Galan-Diez, M.; Lacampagne, A.; Mitchell, S.J.; Mattison, J.A.; Chen, Y.; et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 2016, 23, 1078–1092. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Rahimi, G.R.; Bijeh, N.; Rashidlamir, A. Effects of exercise training on serum preptin, undercarboxylated osteocalcin and high molecular weight adiponectin in adults with metabolic syndrome. Exp. Physiol. 2020, 105, 449–459. [Google Scholar] [CrossRef]
- Patti, A.; Gennari, L.; Merlotti, D.; Dotta, F.; Nuti, R. Endocrine actions of osteocalcin. Int. J. Endocrinol. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Rossi, M.; Battafarano, G.; Pepe, J.; Minisola, S.; Del Fattore, A. The endocrine function of osteocalcin regulated by bone resorption: A lesson from reduced and increased bone mass diseases. Int. J. Mol. Sci. 2019, 20, 4502. [Google Scholar] [CrossRef]
- Lee, N.K.; Sowa, H.; Hinoi, E.; Ferron, M.; Ahn, J.D.; Confavreux, C.; Dacquin, R.; Mee, P.J.; McKee, M.D.; Jung, D.Y.; et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007, 130, 456–469. [Google Scholar] [CrossRef]
- Oury, F.; Sumara, G.; Sumara, O.; Ferron, M.; Chang, H.; Smith, C.E.; Hermo, L.; Suarez, S.; Roth, B.L.; Ducy, P.; et al. Endocrine regulation of male fertility by the skeleton. Cell 2011, 144, 796–809. [Google Scholar] [CrossRef]
- Oury, F.; Khrimian, L.; Denny, C.A.; Gardin, A.; Chamouni, A.; Goeden, N.; Huang, Y.Y.; Lee, H.; Srinivas, P.; Gao, X.B.; et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 2013, 155, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Mera, P.; Laue, K.; Wei, J.; Berger, J.M.; Karsenty, G. Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Mol. Metab. 2016, 5, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Real, J.M.; Izquierdo, M.; Ortega, F.; Gorostiaga, E.; Gomez-Ambrosi, J.; Moreno-Navarrete, J.M.; Fruhbeck, G.; Martinez, C.; Idoate, F.; Salvador, J.; et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J. Clin. Endocrinol. Metab. 2009, 94, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, C.Q.; Zeng, Q.C.; Li, R.X.; Liu, L.; Hao, Q.X.; Shi, C.H.; Zhang, X.Z.; Yan, Y.X. Mechanical strain promotes osteoblast ECM formation and improves its osteoinductive potential. Biomed. Eng. Online 2012, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zheng, J.; Wan, D.; Yang, X. Uniaxial static strain promotes osteoblast proliferation and bone matrix formation in distraction osteogenesis in vitro. Biomed. Res. Int. 2020, 2020, 3906426. [Google Scholar] [CrossRef]
- Berman, A.G.; Organ, J.M.; Allen, M.R.; Wallace, J.M. Muscle contraction induces osteogenic levels of cortical bone strain despite muscle weakness in a mouse model of osteogenesis imperfecta. Bone 2020, 132, 115061. [Google Scholar] [CrossRef]
- Kotani, T.; Tamura, Y.; Kouzaki, K.; Kato, H.; Isemura, M.; Nakazato, K. Percutaneous electrical stimulation-induced muscle contraction prevents the decrease in ribosome RNA and ribosome protein during pelvic hindlimb suspension. J. Appl. Physiol. 2022, 133, 822–833. [Google Scholar] [CrossRef]
- Qin, Y.X.; Lam, H.; Ferreri, S.; Rubin, C. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J. Musculoskelet. Neuronal Interact. 2010, 10, 12–24. [Google Scholar]
- Tamaki, H.; Yotani, K.; Ogita, F.; Hayao, K.; Nakagawa, K.; Sugawara, K.; Kirimoto, H.; Onishi, H.; Kasuga, N.; Yamamoto, N. Electrical stimulation of denervated rat skeletal muscle ameliorates bone fragility and muscle loss in early-stage disuse musculoskeletal atrophy. Calcif. Tissue Int. 2017, 100, 420–430. [Google Scholar] [CrossRef]
- Oga, R.; Nakagawa, K.; Chen, Y.C.; Nita, Y.; Tamaki, H. Impact of eccentric exercise interventions with small and large ranges of motion on rat skeletal muscle tissue and muscle force production. Int. J. Mol. Sci. 2024, 25, 8978. [Google Scholar] [CrossRef]
- Tamaki, H.; Yotani, K.; Ogita, F.; Sugawara, K.; Kirimto, H.; Onishi, H.; Kasuga, N.; Yamamoto, N. Effect of electrical stimulation-induced muscle force and streptomycin treatment on muscle and trabecular bone mass in early-stage disuse musculoskeletal atrophy. J. Musculoskelet. Neuronal Interact. 2015, 15, 270–278. [Google Scholar] [PubMed]
- Bagi, C.M.; Berryman, E.; Moalli, M.R. Comparative bone anatomy of commonly used laboratory animals, implications for drug discovery. Comp. Med. 2011, 61, 76–85. [Google Scholar] [PubMed]
- Carmeli-Ligati, S.; Shipov, A.; Dumont, M.; Holtze, S.; Hildebrandt, T.; Shahar, R. The structure, composition and mechanical properties of the skeleton of the naked mole-rat (Heterocephalus glaber). Bone 2019, 128, 115035. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, T.; Meakin, L.B.; Browne, W.J.; Galea, G.L.; Price, J.S.; Lanyon, L.E. Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J. Bone Min. Miner. Res. 2012, 27, 1784–1793. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.H.; Forwood, M.R.; Rho, J.Y.; Yoshikawa, T. Mechanical loading thresholds for lamellar and woven bone formation. J. Bone Min. Miner. Res. 1994, 9, 87–97. [Google Scholar] [CrossRef]
- Almeida, M.; Laurent, M.R.; Dubois, V.; Claessens, F.; O’Brien, C.A.; Bouillon, R.; Vanderschueren, D.; Manolagas, S.C. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol. Rev. 2017, 97, 135–187. [Google Scholar] [CrossRef]
- Manolagas, S.C. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 2000, 21, 115–137. [Google Scholar] [CrossRef]
- Ru, J.Y.; Wang, Y.F. Osteocyte apoptosis: The roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis. 2020, 11, 846. [Google Scholar] [CrossRef]
- Armamento-Villareal, R.; Aguirre, L.; Waters, D.L.; Napoli, N.; Qualls, C.; Villareal, D.T. Effect of aerobic or resistance exercise, or both, on bone mineral density and bone metabolism in obese older adults while dieting: A randomized controlled trial. J. Bone Min. Miner. Res. 2020, 35, 430–439. [Google Scholar] [CrossRef]
- Robling, A.G. Is bone’s response to mechanical signals dominated by muscle forces? Med. Sci. Sports Exerc. 2009, 41, 2044–2049. [Google Scholar] [CrossRef]
- Lu, T.W.; Taylor, S.J.; O’Connor, J.J.; Walker, P.S. Influence of muscle activity on the forces in the femur: An in vivo study. J. Biomech. 1997, 30, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- LaMothe, J.M.; Hamilton, N.H.; Zernicke, R.F. Strain rate influences periosteal adaptation in mature bone. Med Eng Phys 2005, 27, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Warden, S.J.; Turner, C.H. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5–10 Hz. Bone 2004, 34, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Ferron, M.; Hinoi, E.; Karsenty, G.; Ducy, P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Nat. Acad. Sci. USA 2008, 105, 5266–5270. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Gilbert, E.R.; Liu, D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 2013, 9, 25–53. [Google Scholar] [CrossRef]
- Longobardi, S.; Keay, N.; Ehrenburg, C.; Cittadini, A.; Rosen, T.; Dall, R.; Boroujerdi, M.A.; Bassett, E.E.; Healy, M.L.; Pentecost, C.; et al. Growth hormone (GH) effects on bone and collagen turnover in healthy adults and its potential as a marker of GH abuse in sports: A double blind, placebo-controlled study. The GH-2000 Study Group. J. Clin. Endocrinol. Metab. 2000, 85, 1505–1512. [Google Scholar] [CrossRef]
- Faienza, M.F.; Lassandro, G.; Chiarito, M.; Valente, F.; Ciaccia, L.; Giordano, P. How physical activity across the lifespan can reduce the impact of bone ageing: A literature review. Int. J. Env. Environ. Res. Public. Health 2020, 17, 1862. [Google Scholar] [CrossRef]
- Umemura, Y.; Nagasawa, S.; Honda, A.; Singh, R. High-impact exercise frequency per week or day for osteogenic response in rats. J. Bone Min. Miner. Metab. 2008, 26, 456–460. [Google Scholar] [CrossRef]
- Tunon-Suarez, M.; Reyes-Ponce, A.; Godoy-Ordenes, R.; Quezada, N.; Flores-Opazo, M. Exercise Training to Decrease Ectopic Intermuscular Adipose Tissue in Individuals With Chronic Diseases: A Systematic Review and Meta-Analysis. Phys. Ther. 2021, 101, pzab162. [Google Scholar] [CrossRef]
- Quinlan, J.I.; Franchi, M.V.; Gharahdaghi, N.; Badiali, F.; Francis, S.; Hale, A.; Phillips, B.E.; Szewczyk, N.; Greenhaff, P.L.; Smith, K.; et al. Muscle and tendon adaptations to moderate load eccentric vs. concentric resistance exercise in young and older males. Geroscience 2021, 43, 1567–1584. [Google Scholar] [CrossRef]
CON | LF | HF | p | ||
---|---|---|---|---|---|
Body weight | (g) | 258.50 ± 15.61 | 259.88 ± 15.08 | 257.50 ± 16.36 | 0.961 |
TA muscle weight | (mg) | 485.50 ± 46.33 | 495.00 ± 54.97 | 495.00 ± 38.61 | 0.927 |
Relative muscle weight | (MW/BW) | 1.88 ± 0.09 | 1.90 ± 0.11 | 1.92 ± 0.08 | 0.700 |
Soleus muscle weight | (mg) | 101.67 ± 10.87 | 104.00 ± 9.29 | 105.25 ± 8.84 | 0.814 |
Relative muscle weight | (MW/BW) | 0.39 ± 0.03 | 0.40 ± 0.02 | 0.41 ± 0.02 | 0.466 |
TA muscle force | (N) | 7.68 ± 0.29 | 7.64 ± 1.03 | 7.34 ± 0.8 | 0.754 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Oga, R.; Furumi, T.; Nakagawa, K.; Nita, Y.; Tamaki, H. The Effect of Bone Mechanical Stress Caused by Electrical Stimulation-Induced Muscle Contraction on Osteocalcin Secretion. Biology 2024, 13, 882. https://doi.org/10.3390/biology13110882
Chen Y-C, Oga R, Furumi T, Nakagawa K, Nita Y, Tamaki H. The Effect of Bone Mechanical Stress Caused by Electrical Stimulation-Induced Muscle Contraction on Osteocalcin Secretion. Biology. 2024; 13(11):882. https://doi.org/10.3390/biology13110882
Chicago/Turabian StyleChen, Yi-Chen, Ryoya Oga, Takahiro Furumi, Koki Nakagawa, Yoshihiro Nita, and Hiroyuki Tamaki. 2024. "The Effect of Bone Mechanical Stress Caused by Electrical Stimulation-Induced Muscle Contraction on Osteocalcin Secretion" Biology 13, no. 11: 882. https://doi.org/10.3390/biology13110882