Big Data Management in Drug–Drug Interaction: A Modern Deep Learning Approach for Smart Healthcare
<p>Structured representation of DDIs.</p> "> Figure 2
<p>Architecture of the proposed system SEV-DDI.</p> "> Figure 3
<p>Architecture of the proposed deep neural network.</p> "> Figure 4
<p>Annotation of sentences in the DDI Corpus.</p> "> Figure 5
<p>Statistics of state-of-the-art systems on MEDLINE and DrugBank.</p> "> Figure 6
<p>Prediction of DDI severity on the DrugBank and MEDLINE corpora.</p> ">
Abstract
:1. Introduction
- (a)
- Examples of positive DDIs with multiple subjects (drugs) to one object. In this scenario, subjects do not have any interaction with each other but only with the object.
- (b)
- Represents one drug as a subject and two drugs as objects. In this case, there is surely a connection between the subject and object individually and to the cluster of objects, but no interaction between object drugs.
2. Literature Review
2.1. Drug Interaction Task
2.2. Deep Learning
2.3. Severity Prediction in Drug–Drug Interactions
3. Methods and Implementation
3.1. Pre-Processing
3.2. Recurrent Neural Network Architecture
3.3. Severity Extraction Method
4. Data, Experimental Parameters, and Results
Algorithm 1: Severity Prediction in Drug–Drug Interaction. |
|
4.1. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kohn, L.T.; Corrigan, J.M.; Donaldson, M.S. (Eds.) To Err Is Human; National Academies Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Patanè, M.; Ciriaco, M.; Chimirri, S.; Ursini, F.; Naty, S.; Grembiale, R.D.; Gallelli, L.; De Sarro, G.; Russo, E. Interactions among Low Dose of Methotrexate and Drugs Used in the Treatment of Rheumatoid Arthritis. Adv. Pharmacol. Sci. 2013, 2013, 313858. [Google Scholar] [CrossRef] [PubMed]
- Gallelli, L.; Staltari, O.; Palleria, C.; Di Mizio, G.; De Sarro, G.; Caroleo, B. A case of adverse drug reaction induced by dispensing error. J. Forensic Leg. Med. 2012, 19, 497–498. [Google Scholar] [CrossRef] [PubMed]
- Leporini, C.; Patanè, M.; Saullo, F.; Rende, P.; Gallelli, L.; Di Paola, E.D.; Toscano, R.; Lucia, M.; Rossi, M.; De Sarro, G.; et al. A Comprehensive Safety Evaluation of Trabectedin and Drug–Drug Interactions of Trabectedin-Based Combinations. BioDrugs 2014, 28, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Staltari, O.; Leporini, C.; Caroleo, B.; Russo, E.; Siniscalchi, A.; De Sarro, G.; Gallelli, L. Drug-Drug Interactions: Antiretroviral Drugs and Recreational Drugs. Recent Pat. CNS Drug Discov. 2015, 9, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Palleria, C.; Di Paolo, A.; Giofrè, C.; Caglioti, C.; Leuzzi, G.; Siniscalchi, A.; De Sarro, G.; Gallelli, L. Pharmacokinetic drug-drug interaction and their implication in clinical management. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2013, 18, 601–610. [Google Scholar]
- Akram, J.; Kouzani, A.Z.; Mahmud, M.A.P. Using Adaptive Sensors for Optimised Target Coverage in Wireless Sensor Networks. Sensors 2022, 22, 1083. [Google Scholar] [CrossRef]
- Leape, L.L.; Berwick, D.M. Five Years After to Err Is Human. JAMA 2005, 293, 2384. [Google Scholar] [CrossRef]
- Lester, D. Theories of attempted suicide: Should they differ from theories of completed suicide? Clin. Neuropsychiatry 2009, 6, 188–191. [Google Scholar]
- Tahir, A.; Akram, J.; Adil, M.; Ali, S.; Kouzani, A.Z.; Mahmud, M.A.P. Automatic Target Detection from Satellite Imagery Using Machine Learning. Sensors 2022, 22, 1147. [Google Scholar] [CrossRef]
- Gallelli, L.; Nardi, M.; Prantera, T.; Barbera, S.; Raffaele, M.; Arminio, D.; Pirritano, D.; Colosimo, M.; Maselli, R.; Pelaia, G.; et al. Retrospective analysis of adverse drug reactions induced by gemcitabine treatment in patients with non-small cell lung cancer. Pharmacol. Res. 2004, 49, 259–263. [Google Scholar] [CrossRef] [PubMed]
- de Vries, E.N.; Ramrattan, M.A.; Smorenburg, S.M.; Gouma, D.J.; Boermeester, M.A. The incidence and nature of in-hospital adverse events: A systematic review. Qual. Saf. Health Care 2008, 17, 216–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dollinger, C.; Schwiertz, V.; Sarfati, L.; Gourc-Berthod, C.; Guédat, M.-G.; Alloux, C.; Vantard, N.; Gauthier, N.; He, S.; Kiouris, E.; et al. SIMulation of Medication Error induced by Clinical Trial drug labeling: The SIMME-CT study. Int. J. Qual. Health Care 2016, 28, 311–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallelli, L.; Maida, F.; Rende, P.; Russo, E.; Staltari, O.; Caroleo, B.; De Sarro, G. Recurrence of atrial fibrillation after switching from brand to generic atenolol. J. Pharmacol. Pharmacother. 2015, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Qadir, Z.; Saeed, N.; Le, K. Towards 6G Internet of Things: Recent Advances, Use Cases, and Open Challenges. arXiv 2021, arXiv:2111.06596. [Google Scholar] [CrossRef]
- De Vuono, A.; Scicchitano, F.; Palleria, C.; Russo, E.; De Sarro, G.; Gallelli, L. Lack of efficacy during the switch from brand to generic allopurinol. J. Forensic Leg. Med. 2013, 20, 540–542. [Google Scholar] [CrossRef]
- Cai, R.; Liu, M.; Hu, Y.; Melton, B.L.; Matheny, M.E.; Xu, H.; Duan, L.; Waitman, L.R. Identification of adverse drug-drug interactions through causal association rule discovery from spontaneous adverse event reports. Artif. Intell. Med. 2017, 76, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Qadir, Z.; Khan, S.I.; Khalaji, E.; Al-Turjman, F.; Mahmud, M.A.P.; Kouzani, A.Z.; Le, K. Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids. Energy Rep. 2021, 7, 8465–8475. [Google Scholar] [CrossRef]
- Aronson, J.K. Communicating information about drug interactions. Br. J. Clin. Pharmacol. 2007, 63, 637–639. [Google Scholar] [CrossRef]
- Holzinger, A.; Dehmer, M.; Jurisica, I. Knowledge Discovery and interactive Data Mining in Bioinformatics-State-of-the-Art, future challenges and research directions. BMC Bioinform. 2014, 15 (Suppl. S6), I1. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Yang, Z.; Zhao, Z.; Lin, H.; Li, Y. Extracting Drug-Drug Interaction from the Biomedical Literature Using a Stacked Generalization-Based Approach. PLoS ONE 2013, 8, e65814. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Zazo, M.; Segura-Bedmar, I.; Martínez, P.; Declerck, T. The DDI corpus: An annotated corpus with pharmacological substances and drug–drug interactions. J. Biomed. Inform. 2013, 46, 914–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.I.; Qadir, Z.; Nayak, S.R.; Budati, A.K.; Verma, K.D.; Prakash, D. UAVs path planning architecture for effective medical emergency response in future networks. Phys. Commun. 2021, 47, 101337. [Google Scholar] [CrossRef]
- Björne, J.; Kaewphan, S.; Salakoski, T. UTurku: Drug Named Entity Recognition and Drug-Drug Interaction Extraction Using SVM Classification and Domain Knowledge. In Proceedings of the *SEM 2013-2nd Joint Conference on Lexical and Computational Semantics, Atlanta, GA, USA, 14 June 2013; Volume 2, pp. 651–659. [Google Scholar]
- Duda, S.; Aliferis, C.; Miller, R.; Statnikov, A.; Johnson, K. Extracting drug-drug interaction articles from MEDLINE to improve the content of drug databases. AMIA Annu. Symp. Proc. AMIA Symposium. AMIA Symp. 2005, 2005, 216–220. [Google Scholar]
- Guo, S.; Ramakrishnan, N. Mining linguistic cues for query expansion. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, Hong Kong, China, 2–6 November 2009; p. 335. [Google Scholar] [CrossRef]
- Aggarwal, R.; Qadir, Z.; Khan, S.I.; Kouzani, A.Z.; Mahmud, M.A.P. A gabor filter-based protocol for automated image-based building detection. Buildings 2021, 11, 302. [Google Scholar] [CrossRef]
- Kim, S.; Liu, H.; Yeganova, L.; Wilbur, W.J. Extracting drug–drug interactions from literature using a rich feature-based linear kernel approach. J. Biomed. Inform. 2015, 55, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akram, J.; Javed, A.; Khan, S.; Akram, A.; Ahmad, W. Swarm intelligence based localization in wireless sensor networks. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, New York, NY, USA, 22 April 2021; pp. 1906–1914. [Google Scholar] [CrossRef]
- Bobi, T.; Fluck, J.; Hofmann-Apitius, M. SCAI: Extracting drug-drug interactions using a rich feature vector. In Proceedings of the *SEM 2013-2nd Joint Conference on Lexical and Computational Semantics, Atlanta, GA, USA, 13 June 2013; Volume 2, pp. 675–683. Available online: https://aclanthology.org/S13-2111 (accessed on 14 December 2021).
- Akram, J.; Tahir, A.; Akram, A.; Kouzani, A.Z.; Mahmud, M.A.P. Cloud- and Fog-Integrated Smart Grid Model for Efficient Resource Utilisation. Sensors 2021, 21, 7846. [Google Scholar] [CrossRef]
- Iqbal, K.; Inam, H.; Qayyum, S. Promoting Customer Loyalty and Satisfaction in Financial Institutions through Technology Integration: The Roles of Service Quality, Awareness, and Perceptions. Sustainability 2021, 13, 12951. [Google Scholar] [CrossRef]
- Zheng, W.; Lin, H.; Zhao, Z.; Xu, B.; Zhang, Y.; Yang, Z.; Wang, J. A graph kernel based on context vectors for extracting drug–drug interactions. J. Biomed. Inform. 2016, 61, 34–43. [Google Scholar] [CrossRef]
- Shen, Y.; He, X.; Gao, J.; Deng, L.; Mesnil, G. Learning semantic representations using convolutional neural networks for web search. In Proceedings of the 23rd International Conference on World Wide Web, New York, NY, USA, 7 April 2014; pp. 373–374. [Google Scholar] [CrossRef]
- Qadir, Z.; Munir, A.; Ashfaq, T.; Khan, M.A.; Le, K. A prototype of an energy-efficient MAGLEV train: A step towards cleaner train transport. Clean. Eng. Technol. 2021, 4, 100217. [Google Scholar] [CrossRef]
- Yih, W.; He, X.; Meek, C. Semantic Parsing for Single-Relation Question Answering. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Baltimore, MD, USA, 26 June 2014; Volume 2, pp. 643–648. [Google Scholar] [CrossRef]
- Liu, S.; Tang, B.; Chen, Q.; Wang, X. Drug-Drug Interaction Extraction via Convolutional Neural Networks. Comput. Math. Methods Med. 2016, 2016, 103432. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, K.; Chen, Q.; Tang, B. Dependency-based convolutional neural network for drug-drug interaction extraction. In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016; pp. 1074–1080. [Google Scholar] [CrossRef]
- Huang, D.; Jiang, Z.; Zou, L.; Li, L. Drug–drug interaction extraction from biomedical literature using support vector machine and long short term memory networks. Inf. Sci. 2017, 415–416, 100–109. [Google Scholar] [CrossRef]
- Quan, C.; Hua, L.; Sun, X.; Bai, W. Multichannel Convolutional Neural Network for Biological Relation Extraction. BioMed Res. Int. 2016, 2016, 2571–2581. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yang, Z.; Luo, L.; Lin, H.; Wang, J. Drug drug interaction extraction from biomedical literature using syntax convolutional neural network. Bioinformatics 2016, 32, btw486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, D. Relation Classification via Recurrent Neural Network. arXiv 2015, arXiv:1508.01006. [Google Scholar]
- Khan, S.I.; Qadir, Z.; Kiani, Y.S.; Kouzani, A.Z.; Mahmud, M.A.P. Insights into the Mobility Pattern of Australians during COVID-19. Sustainability 2021, 13, 9611. [Google Scholar] [CrossRef]
- Li, F.; Zhang, M.; Fu, G.; Ji, D. A neural joint model for entity and relation extraction from biomedical text. BMC Bioinform. 2017, 18, 198. [Google Scholar] [CrossRef] [Green Version]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings, San Diego, CA, USA, 1 January 2015; Available online: http://arxiv.org/abs/1409.0473 (accessed on 16 December 2021).
- Santos, C.D.; Tan, M.; Xiang, B.; Zhou, B. Attentive Pooling Networks. arXiv 2016, arXiv:1602.03609. [Google Scholar]
- Rocktäschel, T.; Grefenstette, E.; Hermann, K.M.; Kočiský, T.; Blunsom, P. Reasoning about Entailment with Neural Attention. In Proceedings of the 4th International Conference on Learning Representations, ICLR 2016-Conference Track Proceedings, San Juan, PR, USA, 22 September 2015; Available online: http://arxiv.org/abs/1509.06664 (accessed on 12 December 2021).
- Liaquat, M.U.; Rahman, A.; Qadir, Z.; Kouzani, A.Z.; Mahmud, M.A.P. Localization of Sound Sources: A Systematic Review. Energies 2021, 14, 3910. [Google Scholar] [CrossRef]
- Liaquat, M.U.; Rahman, A.; Qadir, Z.; Kouzani, A.Z.; Mahmud, M.A.P. Sound Localization for Ad-Hoc Microphone Arrays. Energies 2021, 14, 3446. [Google Scholar] [CrossRef]
- Niu, Y.; Zhu, X.; Li, J.; Hirst, G. Analysis of polarity information in medical text. AMIA Annu. Symp. Proc. 2005, 2005, 570–574. [Google Scholar]
- Xia, L.; Gentile, A.L.; Munro, J.; Iria, J. Improving Patient Opinion Mining through Multi-step Classification. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5729, pp. 70–76. [Google Scholar] [CrossRef]
- Romagnoli, K.M.; Nelson, S.D.; Hines, L.; Empey, P.; Boyce, R.D.; Hochheiser, H. Information needs for making clinical recommendations about potential drug-drug interactions: A synthesis of literature review and interviews. BMC Med. Inform. Decis. Mak. 2017, 17, 21. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.I.; Anum, N.; Qadir, Z.; Kouzani, A.Z.; Parvez Mahmud, M.A. Post-Flood Risk Management and Resilience Building Practices: A Case Study. Appl. Sci. 2021, 11, 4823. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and their Compositionality. arXiv 2013, arXiv:1310.4546. [Google Scholar]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. In Proceedings of the 1st International Conference on Learning Representations, ICLR 2013-Workshop Track Proceedings, Scottsdale, AZ, USA, 17 January 2013; Available online: http://arxiv.org/abs/1301.3781 (accessed on 2 January 2022).
- Shaukat, M.A.; Shaukat, H.R.; Qadir, Z.; Kouzani, A.Z.; Mahmud, M.A.P. Cluster analysis and model comparison using smart meter data. Sensors 2021, 21, 3157. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.I.; Qadir, Z.; Kouzani, A.Z.; Mahmud, M.A.P. Insight into the Impact of COVID-19 on Australian Transportation Sector: An Economic and Community-Based Perspective. Sustainability 2021, 13, 1276. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Z.; de Melo, G.; Liu, Z. Relation Classification via Multi-Level Attention CNNs. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 13 August 2016; Volume 3, pp. 1298–1307. [Google Scholar] [CrossRef] [Green Version]
- Muneeb, T.H.; Sahu, S.; Anand, A. Evaluating distributed word representations for capturing semantics of biomedical concepts. In Proceedings of the BioNLP 15, Beijing, China, 19 July 2015; pp. 158–163. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Baccianella, S.; Esuli, A.; Sebastiani, F. SENTIWORDNET 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of the 7th International Conference on Language Resources and Evaluation, LREC 2010, Valletta, Malta, 9 May 2010; pp. 2200–2204. [Google Scholar]
- Bokharaeian, B.; Díaz, A. NIL UCM: Extracting Drug-Drug interactions from text through combination of sequence and tree kernels. In Proceedings of the *SEM 2013-2nd Joint Conference on Lexical and Computational Semantics, Atlanta, GA, USA, 14 August 2013; Volume 2, pp. 644–650. [Google Scholar]
- Rastegar-Mojarad, M.; Boyce, R.D.; Prasad, R. UWM-TRIADS: Classifying Drug-Drug Interactions with Two-Stage SVM and Post-Processing. In Proceedings of the *SEM 2013-2nd Joint Conference on Lexical and Computational Semantics, Atlanta, GA, USA, 12 June 2013; Volume 2, pp. 667–674. [Google Scholar]
- Hailu, N.D.; Hunter, L.E.; Bretonnel Cohen, K. UColorado SOM: Extraction of Drug-Drug Interactions from BioMedical Text using Knowledge-rich and Knowledge-poor Features. In Proceedings of the *SEM 2013-2nd Joint Conference on Lexical and Computational Semantics, Atlanta, GA, USA, 15 June 2013; Volume 2, pp. 684–688. [Google Scholar]
- Bui, Q.-C.; Sloot, P.M.A.; van Mulligen, E.M.; Kors, J.A. A novel feature-based approach to extract drug-drug interactions from biomedical text. Bioinformatics 2014, 30, 3365–3371. [Google Scholar] [CrossRef] [Green Version]
- Raihani, A.; Laachfoubi, N. Extracting drug-drug interactions from biomedical text using a feature-based kernel approach. J. Theor. Appl. Inf. Technol. 2016, 92, 109–120. [Google Scholar]
- Zhang, J.; Li, H.; Mo, D.; Chang, L. Mining Multispectral Aerial Images for Automatic Detection of Strategic Bridge Locations for Disaster Relief Missions. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer Nature Switzerland AG: Cham, Switzerland, 2019; Volume 11607, pp. 189–200. [Google Scholar] [CrossRef]
- Sun, X.; Dong, K.; Ma, L.; Sutcliffe, R.; He, F.; Chen, S.; Feng, J. Drug-Drug Interaction Extraction via Recurrent Hybrid Convolutional Neural Networks with an Improved Focal Loss. Entropy 2019, 21, 37. [Google Scholar] [CrossRef] [Green Version]
- Ali Awan, A.; Khalid, U.; Maqsood, A. Revolutionizing Telemedicine by Instilling H.265. Int. J. Image Graph. Signal Processing 2017, 9, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Xing, Y.; Ge, W.; Liu, X.; Zou, J.; Zhou, C.; Liao, J. Drug-drug interaction extraction via hybrid neural networks on biomedical literature. J. Biomed. Inform. 2020, 106, 103432. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Park, J.; Park, S. AGCN: Attention-based graph convolutional networks for drug-drug interaction extraction. Expert Syst. Appl. 2020, 159, 113538. [Google Scholar] [CrossRef]
DDI Type | Description | Sentence |
---|---|---|
Int | The interaction is reported in a sentence but detailed information about the interaction is not provided. | Concomitant use of alcohol with phentermine hydrochloride may result in an adverse drug interaction. |
Advise | For a pair of drugs, there are some recommendations about its usage. | Scopolamine should be used with care in patients taking other drugs that are capable of causing CNS effects such as sedatives, tranquilizers, or alcohol. |
Mechanism | Between a pair of drugs, there is a pharmacokinetic mechanism. | Penicillin blood levels may be prolonged by concurrent administration of probenecid which blocks the renal tubular secretion of penicillins. |
Effect | Between a pair of drugs, an effect is reported in the sentence which could be positive or negative. | Other HDAC Inhibitors. Severe thrombocytopenia and gastrointestinal bleeding have been reported with concomitant use of ZOLINZA and other HDAC inhibitors (e.g., valproic acid). |
False | There is no interaction between the mentioned two drugs. | The in vitro binding of warfarin to human plasma proteins is unaffected by tolmetin, and tolmetin does not alter the prothrombin time of normal volunteers. |
DrugBank | MEDLINE | |||||
---|---|---|---|---|---|---|
Contents | Train | Test | Total | Train | Test | Total |
Articles | 572 | 158 | 730 | 142 | 33 | 175 |
Drug Pairs | 26,005 | 5265 | 31,270 | 1787 | 451 | 2238 |
Positive DDI Pairs | 3789 | 884 | 4673 | 232 | 95 | 327 |
Negative DDI Pairs | 22,216 | 4381 | 26,597 | 1555 | 356 | 1911 |
Parameter | Value |
---|---|
Word Embedding Dimensions | 100 |
Position Embedding Dimensions | 20 |
Mini Batch Size | 60 |
Hidden State’s Dimensions | 230 |
Shortest Path Length | 12 |
Learning Rate | 0.005 |
Embedding Dropout | 0.7 |
Dense Dropout | 0.5 |
Method | System/Team | Year | Precision (P) | Recall (R) | F-Score (F1) |
---|---|---|---|---|---|
SVM-based methods | UTurku [30] | 2013 | 73.2 | 49.9 | 59.4 |
NIL_UCM [63] | 2013 | 55.0 | 53.0 | 54.0 | |
SCAI [29] | 2013 | 55.0 | 39.0 | 46.0 | |
UWM-TRIADS [64] | 2013 | 43.0 | 50.0 | 47.0 | |
UColorado_SOM [65] | 2013 | 27.0 | 43.0 | 33.0 | |
BioSem [66] | 2014 | 67.0 | 52.0 | 59.0 | |
FBLKA [28] | 2015 | nil | nil | 67.0 | |
Raihani and Laachfoubi [67] | 2016 | 73.7 | 68.7 | 71.1 | |
Zheng et al. [34] | 2016 | nil | nil | 68.4 | |
Neural Nets-based methods | MCCNN-DDI [40] | 2016 | nil | nil | 67.8 |
SCNN [41] | 2016 | 68.5 | 61.0 | 64.5 | |
CNN-DDI [37] | 2016 | 75.3 | 60.4 | 67.0 | |
Joint-LSTMs [39] | 2017 | 71.3 | 66.9 | 69.3 | |
RHCNN [69] | 2019 | 77.3 | 73.75 | 75.48 | |
SGRU-CNN [71] | 2020 | 76.19 | 73.34 | 74.74 | |
AGCN [72] | 2020 | 78.17 | 75.59 | 76.86 | |
Our Method: SEV-DDI | 2021 | 83.81 | 81.59 | 82.68 |
Sentence | Drug Pairs | Severity Level |
---|---|---|
The possibility of hypotensive effects can be minimized by either discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with perindopril. | (Salt, perindopril) | Highly Beneficiary |
AAV2-mediated retinal transduction is improved by co-injection of heparinase III or chondroitin ABC lyase. | (AAV2, chondroitin ABC lyase) | Moderate Beneficiary |
Scopolamine should be used with care in patients taking other drugs that are capable of causing CNS effects such as sedatives, tranquilizers, or alcohol. | (Scopolamine, sedatives), (Scopolamine, tranquilizers), (Scopolamine, alcohol) | Low |
Pantoprazole has a much weaker effect on clopidogrel’s pharmacokinetics and on platelet reactivity during concomitant use. | (Pantoprazole, clopidogrel) | Low |
Concomitant use of alcohol with phentermine hydrochloride may result in an adverse drug interaction. | (alcohol, phentermine hydrochloride) | Moderate Dangerous |
Other HDAC Inhibitors. Severe thrombocytopenia and gastrointestinal bleeding have been reported with concomitant use of ZOLINZA and other HDAC inhibitors (e.g., valproic acid). | (HDAC inhibitors, ZOLINZA) | Highly Dangerous |
DrugBank | MEDLINE | Total | ||
---|---|---|---|---|
Articles | 730 | 175 | 905 | |
Candidate DDIs | 31,270 | 2238 | 33,508 | |
Positive DDI Related Sentence | 4672 | 327 | 4999 | |
Beneficial DDIs | Low | 729 | 89 | 818 |
Moderate | 759 | 73 | 832 | |
High | 762 | 39 | 801 | |
Dangerous DDIs | Low | 336 | 22 | 358 |
Moderate | 724 | 56 | 780 | |
High | 1362 | 48 | 1410 |
Severity Level | DrugBank | MEDLINE | DDIExtraction-2013 |
---|---|---|---|
Low | 22% | 34% | 24% |
Moderate | 32% | 39% | 32% |
High | 36% | 27% | 44% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salman, M.; Munawar, H.S.; Latif, K.; Akram, M.W.; Khan, S.I.; Ullah, F. Big Data Management in Drug–Drug Interaction: A Modern Deep Learning Approach for Smart Healthcare. Big Data Cogn. Comput. 2022, 6, 30. https://doi.org/10.3390/bdcc6010030
Salman M, Munawar HS, Latif K, Akram MW, Khan SI, Ullah F. Big Data Management in Drug–Drug Interaction: A Modern Deep Learning Approach for Smart Healthcare. Big Data and Cognitive Computing. 2022; 6(1):30. https://doi.org/10.3390/bdcc6010030
Chicago/Turabian StyleSalman, Muhammad, Hafiz Suliman Munawar, Khalid Latif, Muhammad Waseem Akram, Sara Imran Khan, and Fahim Ullah. 2022. "Big Data Management in Drug–Drug Interaction: A Modern Deep Learning Approach for Smart Healthcare" Big Data and Cognitive Computing 6, no. 1: 30. https://doi.org/10.3390/bdcc6010030
APA StyleSalman, M., Munawar, H. S., Latif, K., Akram, M. W., Khan, S. I., & Ullah, F. (2022). Big Data Management in Drug–Drug Interaction: A Modern Deep Learning Approach for Smart Healthcare. Big Data and Cognitive Computing, 6(1), 30. https://doi.org/10.3390/bdcc6010030