Generalized Bounded Turning Functions Connected with Gregory Coefficients
Abstract
:1. 2020 Mathematics Subject Classification
- (1)
- (2)
- (3)
- ,
2. Logarithmic Function
3. A Set of Lemmas
4. Main Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieberbach, L. Über dié Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preuss. Akad. Der Wiss. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Chichra, P.N. New subclasses of the class of close-to-convex functions. Proc. Am. Math. Soc. 1977, 62, 37–43. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceeding of the Conference on Complex Analysis (Tianjin, 1992); Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Conference Proceedings and Lecture Notes in Analysis; International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157–169. [Google Scholar]
- Dziok, J.; Raina, R.K.; Sokól, J. Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers. Comput. Math. Appl. 2011, 61, 2605–2613. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokól, J. On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Kumar, V.; Cho, N.E.; Ravichandran, V.; Srivastava, H.M. Sharp Coefficient bounds for starlike functions associated with the Bell numbers. Math. Slovaca 2019, 69, 1053–1064. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Goel, P.; Kumar, S.S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
- Włoch, A.; Wołowiec-Musiał, M. On generalized telephone number, their interpretations and matrix generators. Util. Math. 2017, 10, 531–539. [Google Scholar]
- Deniz, E. Sharp coefficients bounds for starlike functions associated with generalized telephone numbers. Bull. Malays. Sci. Soc. 2021, 44, 1525–1542. [Google Scholar] [CrossRef]
- Alahmade, A.; Mujahid, Z.; Tawfiq, F.M.O.; Khan, B.; Khan, N.; Tchier, F. Third Hankel Determinant for Subclasses of Analytic and m-Fold Symmetric Functions Involving Cardioid Domain and Sine Function. Symmetry 2023, 15, 2039. [Google Scholar] [CrossRef]
- Berezin, I.S.; Zhidkov, N.P. Computing Methods; Addison-Wesley Publishing Company. Inc.: Reading, MA, USA, 1965. [Google Scholar]
- Phillips, G.M. Gregory’s method for numerical integration. Amer. Math. Mon. 1972, 79, 270–274. [Google Scholar] [CrossRef]
- Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013, 281. [Google Scholar] [CrossRef]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Ihsan, M. Results on Hankel determinants for the inverse of certain analytic functions subordinated to the exponential function. Mathematics 2022, 10, 3429. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorthy, G.; Bulboaca, T. The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain. Real Acad. Cienc. Exactas Fıs. Natur. Ser. A Mat. (RACSAM) 2022, 116, 145. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kumar, S.; Kumar, V.; Cho, N.E. Hermitian-Toeplitz and Hankel determinants for starlike functions associated with a rational function. J. Nonlinear Convex Anal. 2022, 23, 2815–2833. [Google Scholar]
- Srivastava, H.M.; Shaba, T.G.; Murugusundaramoorthy, G.; Wanas, A.K.; Oros, G.I. The Fekete-Szego functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator. AIMS Math. 2023, 8, 340–360. [Google Scholar] [CrossRef]
- Avkhadiev, F.G.; Wirths, K.J. Schwarz-Pick Type Inequalities; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- FitzGerald, C.H.; Pommerenke, C. The De Branges theorem on univalent functions. Trans. Am. Math. Soc. 1985, 290, 683–690. [Google Scholar] [CrossRef]
- FitzGerald, C.H.; Pommerenke, C. A theorem of De Branges on univalent functions. Serdica 1987, 13, 21–25. [Google Scholar] [CrossRef]
- Kayumov, I.P. On Brennan’s conjecture for a special class of functions. Math. Notes 2005, 78, 498–502. [Google Scholar] [CrossRef]
- Andreev, V.V.; Duren, P.L. Inequalities for logarithmic coefficients of univalent functions and their derivatives. Indiana Univ. Math. J. 1988, 37, 721–733. [Google Scholar] [CrossRef]
- Alimohammadi, D.; Analouei Adegani, E.; Bulboaca, T.; Cho, N.E. Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions. J. Funct. Spaces 2021, 2021, 6690027. [Google Scholar] [CrossRef]
- Deng, Q. On the logarithmic coefficients of Bazilevic functions. Appl. Math. Comput. 2011, 217, 5889–5894. [Google Scholar] [CrossRef]
- Roth, O. A sharp inequality for the logarithmic coefficients of univalent functions. Proc. Am. Math. Soc. 2017, 135, 2051–2054. [Google Scholar] [CrossRef]
- Ye, Z. The logarithmic coefficients of close-to-convex functions. Bull. Inst. Math. Acad. Sin. (New Ser.) 2008, 3, 445–452. [Google Scholar]
- Obradović, M.; Ponnusamy, S.; Wirths, K.J. Logarithmic coefficients and a coefficient conjecture for univalent functions. Monatshefte Fur Math. 2018, 185, 489–501. [Google Scholar] [CrossRef]
- Girela, D. Logarithmic coefficients of univalent functions. Ann. Acad. Sci. Fenn. Ser. Math. 2000, 25, 337–350. [Google Scholar]
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 2001. [Google Scholar]
- Lowner, K. Untersuchungen Über schlichte konforme Abbildungen des Einheitskreises I. Math. Ann. 1923, 89, 103–121. [Google Scholar] [CrossRef]
- Yang, S.S. Estimates for coefficients of univalent functions from integral means and Grunsky inequalities. Isr. J. Math. 1994, 87, 129–142. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivatives in P. Proc. Am. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Function. In Studia Mathematica Mathematische Lehrbucher; Vandenhoeck and Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Caratheodory, C. Uber den Variabilitatsbereich der Fourier’schen Konstantenvon positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 1911, 32, 193–217. [Google Scholar] [CrossRef]
- Ohno, R.; Sugawa, T. Coefficient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions. Kyoto J. Math. 2018, 58, 227–241. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Mujahid, Z.; Khan, N.; Tchier, F.; Ghaffar Khan, M. Generalized Bounded Turning Functions Connected with Gregory Coefficients. Axioms 2024, 13, 359. https://doi.org/10.3390/axioms13060359
Tang H, Mujahid Z, Khan N, Tchier F, Ghaffar Khan M. Generalized Bounded Turning Functions Connected with Gregory Coefficients. Axioms. 2024; 13(6):359. https://doi.org/10.3390/axioms13060359
Chicago/Turabian StyleTang, Huo, Zeeshan Mujahid, Nazar Khan, Fairouz Tchier, and Muhammad Ghaffar Khan. 2024. "Generalized Bounded Turning Functions Connected with Gregory Coefficients" Axioms 13, no. 6: 359. https://doi.org/10.3390/axioms13060359
APA StyleTang, H., Mujahid, Z., Khan, N., Tchier, F., & Ghaffar Khan, M. (2024). Generalized Bounded Turning Functions Connected with Gregory Coefficients. Axioms, 13(6), 359. https://doi.org/10.3390/axioms13060359