An Optimization Problem for Computing Predictive Potential of General Sum/Product-Connectivity Topological Indices of Physicochemical Properties of Benzenoid Hydrocarbons
<p>Fissure, cove, bay, and fjord in a benzenoid system.</p> "> Figure 2
<p>Correlation coefficient curves between general indices and <math display="inline"><semantics> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </semantics></math> of lower benzenoids (far view).</p> "> Figure 3
<p>Correlation coefficient curves between general indices and <math display="inline"><semantics> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </semantics></math> of lower benzenoids.</p> "> Figure 4
<p>Correlation coefficient curves between general indices and <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi>H</mi> <mi>f</mi> <mn>0</mn> </msubsup> </mrow> </semantics></math> of lower benzenoids (far view).</p> "> Figure 5
<p>Correlation coefficient curves between general indices and <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi>H</mi> <mi>f</mi> <mn>0</mn> </msubsup> </mrow> </semantics></math> of lower benzenoids.</p> "> Figure 6
<p>Intervals for good <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <msub> <mi>R</mi> <mi>α</mi> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>C</mi> <msub> <mi>I</mi> <mi>α</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi>H</mi> <mi>f</mi> <mn>0</mn> </msubsup> </mrow> </semantics></math>-<math display="inline"><semantics> <msub> <mi>R</mi> <mi>α</mi> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi>H</mi> <mi>f</mi> <mn>0</mn> </msubsup> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>C</mi> <msub> <mi>I</mi> <mi>α</mi> </msub> </mrow> </semantics></math> for lower BHs.</p> "> Figure 7
<p>Scatter plots of <math display="inline"><semantics> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mo>−</mo> <mn>0.33030</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>C</mi> <msub> <mi>I</mi> <mrow> <mo>−</mo> <mn>0.62336</mn> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi>H</mi> <mi>f</mi> <mn>0</mn> </msubsup> </mrow> </semantics></math>-<math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mo>−</mo> <mn>1.72056</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <msubsup> <mi>H</mi> <mi>f</mi> <mn>0</mn> </msubsup> </mrow> </semantics></math>-<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>C</mi> <msub> <mi>I</mi> <mrow> <mo>−</mo> <mn>3.24966</mn> </mrow> </msub> </mrow> </semantics></math> for lower benzenoids.</p> "> Figure 8
<p>Plot delivering the value <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo>^</mo> </mover> <mo>=</mo> <mo>−</mo> <mn>0.319</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>R</mi> <mi>α</mi> </msub> </semantics></math>, which maximizes the multiple correlation value <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>(</mo> <mover accent="true"> <mi>α</mi> <mo>^</mo> </mover> <mo>)</mo> <mo>=</mo> <mn>0.997</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Distribution of variables <math display="inline"><semantics> <mrow> <mi>Y</mi> <mo>=</mo> <msub> <mi>R</mi> <mi>α</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>b</mi> <mi>p</mi> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>Δ</mo> <msubsup> <mi>H</mi> <mi>f</mi> <mi>o</mi> </msubsup> </mrow> </semantics></math> and the bivariate relationships between them. Moreover, the main diagonal entries present the distribution of data points. The *** denotes the continuance of decimal expression.</p> "> Figure 10
<p>Plot delivering the value <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo>^</mo> </mover> <mo>=</mo> <mo>−</mo> <mn>0.553</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>C</mi> <msub> <mi>I</mi> <mi>α</mi> </msub> </mrow> </semantics></math>, which maximizes the multiple correlation value <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>(</mo> <mover accent="true"> <mi>α</mi> <mo>^</mo> </mover> <mo>)</mo> <mo>=</mo> <mn>0.996</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>Distribution of variables <math display="inline"><semantics> <mrow> <mi>Y</mi> <mo>=</mo> <mi>S</mi> <mi>C</mi> <msub> <mi>I</mi> <mi>α</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>b</mi> <mi>p</mi> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>Δ</mo> <msubsup> <mi>H</mi> <mi>f</mi> <mi>o</mi> </msubsup> </mrow> </semantics></math> and the bivariate relationships between them. Moreover, the main diagonal entries present the distribution of data points. The *** denotes the continuance of decimal expression.</p> ">
Abstract
:1. Introduction
2. Mathematical Preliminaries
3. Materials and Methods
4. Results and Discussion
5. Simultaneous Predictive Potential of and
6. Conclusions
7. Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gutman, I.; Furtula, B. Novel Molecular Structure Descriptors—Theory and Applications I; University of Kragujevac: Kragujevac, Serbia, 2010. [Google Scholar]
- Trinajstić, N.; Li, X.; Gutman, I. Mathematical aspects of Randić-type molecular structure descriptors. Croat. Chem. Acta 2006, 79, A31–A32. [Google Scholar]
- Gutman, I.; Furtula, B. (Eds.) Recent Results in the Theory of Randić Index; University of Kragujevac: Kragujevac, Serbia, 2008. [Google Scholar]
- Bollobás, B.; Erdös, P. Graphs of extremal weights. Ars Comb. 1998, 50, 225. [Google Scholar] [CrossRef]
- Devillers, J.; Balaban, A.T. Topological Indices and Related Descriptors in QSAR and QSPR; Gordon and Breach: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Zhou, B.; Trinajstić, N. On a novel connectivity index. J. Math. Chem. 2009, 46, 1252–1270. [Google Scholar] [CrossRef]
- Ullah, A.; Aurangzeb; Zaman, S. A new perspective on the modeling and topological characterization of H-Naphtalenic nanosheets with applications. J. Mol. Model. 2022, 28, 211. [Google Scholar] [CrossRef]
- Ullah, A.; Shamsudin; Zaman, S.; Hamraz, A. Zagreb Connection topological descriptors and structural property of the triangular chain structures. Phys. Scr. 2023, 8, 025009. [Google Scholar] [CrossRef]
- Ullah, A.; Zaman, S.; Hamraz, A.; Muzammal, M. On the construction of some bioconjugate networks and their structural modeling via irregularity topological indices. Eur. Phys. J. E 2023, 46, 72. [Google Scholar] [CrossRef]
- Ullah, A.; Zaman, S.; Hussain, A.; Jabeen, A.; Belay, M.B. Derivation of mathematical closed form expressions for certain irregular topological indices of 2D nanotubes. Sci. Rep. 2023, 13, 11187. [Google Scholar] [CrossRef]
- Gutman, I.; Tošović, J. Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices. J. Serb. Chem. Soc. 2013, 78, 805–810. [Google Scholar] [CrossRef]
- Malik, M.Y.H.; Binyamin, M.A.; Hayat, S. Correlation ability of degree-based topological indices for physicochemical properties of polycyclic aromatic hydrocarbons with applications. Polycycl. Aromat. Compd. 2022, 42, 6267–6281. [Google Scholar] [CrossRef]
- Hayat, S.; Khan, S.; Khan, A.; Liu, J.-B. Valency-based molecular descriptors for measuring the π-electronic energy of lower polycyclic aromatic hydrocarbons. Polycycl. Aromat. Compd. 2022, 42, 1113–1129. [Google Scholar] [CrossRef]
- Hayat, S.; Suhaili, N.; Jamil, H. Statistical significance of valency-based topological descriptors for correlating thermodynamic properties of benzenoid hydrocarbons with applications. Comput. Theor. Chem. 2023, 1227, 114259. [Google Scholar] [CrossRef]
- Randić, M. Characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
- Cruz, R.; Gutman, I.; Rada, J. On benzenoid systems with minimal number of inlets. J. Serb. Chem. Soc. 2013, 78, 1351–1357. [Google Scholar] [CrossRef]
- Furtula, B.; Gutman, I. Comparing energy and Randić energy. Maced. J. Chem. Chem. Eng. 2013, 32, 117–123. [Google Scholar] [CrossRef]
- Randić, M. The connectivity index 25 years after. J. Mol. Graph. Model. 2001, 20, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wang, S.; Zhou, B.; Trinajstić, N. On the sum-connectivity index. Filomat 2011, 25, 29–42. [Google Scholar] [CrossRef]
- Xing, R.; Zhou, B.; Trinajstić, N. Sum-connectivity index of molecular trees. J. Math. Chem. 2010, 48, 583–591. [Google Scholar] [CrossRef]
- Balister, P.; Bollobás, B.; Gerke, S. The generalized Randić index of trees. J. Graph Theory 2007, 56, 270–286. [Google Scholar] [CrossRef]
- Li, J.; Li, Y. The asymptotic value of the zeroth-order Randić index and sum-connectivity index for trees. Appl. Math. Comput. 2015, 266, 1027–1030. [Google Scholar] [CrossRef]
- Li, F.; Ye, Q. Second order Randić index of fluoranthene-type benzenoid systems. Appl. Math. Comput. 2015, 268, 534–546. [Google Scholar] [CrossRef]
- Li, X.; Zheng, J. Extremal chemical trees with minimum or maximum general Randić index. MATCH Commun. Math. Comput. Chem. 2006, 55, 381–390. [Google Scholar]
- Zhou, B.; Trinajstić, N. On general sum-connectivity index. J. Math. Chem. 2010, 47, 210–218. [Google Scholar] [CrossRef]
- Akhter, S.; Imran, M.; Raza, Z. Bounds for the general sum-connectivity index of composite graphs. J. Ineq. Appl. 2017, 2017, 76. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Zhou, B.; Trinajstić, N. On the general sum-connectivity index of trees. Appl. Math. Lett. 2011, 24, 402–405. [Google Scholar] [CrossRef]
- Milovanović, I.Ž.; Milovanović, E.I.; Matejić, M. Some inequalities for general sum-connectivity index. MATCH Commun. Math. Comput. Chem. 2018, 79, 477–489. [Google Scholar]
- Zaman, S. Cacti with maximal general sum-connectivity index. J. Appl. Math. Comput. 2021, 65, 147–160. [Google Scholar] [CrossRef]
- Rada, J.; Araujo, O.; Gutman, I. Randić index of benzenoid systems and phenylenes. Croat. Chem. Acta 2001, 74, 225–235. [Google Scholar]
Molecule | Structure | ||
---|---|---|---|
Benzene | 75.2 | 80.1 | |
Naphthalene | 141 | 218 | |
Phenanthrene | 202.7 | 338 | |
Anthracene | 222.6 | 340 | |
Chrysene | 271.1 | 431 | |
Benzo[a]anthracene | 277.1 | 425 | |
Triphenylene | 275.1 | 429 | |
Tetracene | 310.5 | 440 | |
Benzo[a]pyrene | 296 | 496 | |
Benzo[e]pyrene | 289.9 | 493 | |
Perylene | 319.2 | 497 | |
Anthanthrene | 323 | 547 | |
Benzo[ghi]perylene | 301.2 | 542 | |
Dibenzo[a,c]anthracene | 348 | 535 | |
Dibenzo[a,h]anthracene | 335 | 535 | |
Dibenzo[a,j]anthracene | 336.3 | 531 | |
Picene | 336.9 | 519 | |
Coronene | 296.7 | 590 | |
Dibenzo(a,h)pyrene | 375.6 | 596 | |
Dibenzo(a,i)pyrene | 366 | 594 | |
Dibenzo(a,l)pyrene | 393.3 | 595 | |
Pyrene | 221.3 | 393 |
Molecule | ||
---|---|---|
Benzene | ||
Naphthalene | ||
Phenanthrene | ||
Anthracene | ||
Chrysene | ||
Benzo[a]anthracene | ||
Triphenylene | ||
Tetracene | ||
Benzo[a]pyrene | ||
Benzo[e]pyrene | ||
Perylene | ||
Anthanthrene | ||
Benzo[ghi]perylene | ||
Dibenzo[a,c]anthracene | ||
Dibenzo[a,h]anthracene | ||
Dibenzo[a,j]anthracene | ||
Picene | ||
Coronene | ||
Dibenzo(a,h)pyrene | ||
Dibenzo(a,i)pyrene | ||
Dibenzo(a,l)pyrene | ||
Pyrene |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayat, S.; Arfan, A.; Khan, A.; Jamil, H.; Alenazi, M.J.F. An Optimization Problem for Computing Predictive Potential of General Sum/Product-Connectivity Topological Indices of Physicochemical Properties of Benzenoid Hydrocarbons. Axioms 2024, 13, 342. https://doi.org/10.3390/axioms13060342
Hayat S, Arfan A, Khan A, Jamil H, Alenazi MJF. An Optimization Problem for Computing Predictive Potential of General Sum/Product-Connectivity Topological Indices of Physicochemical Properties of Benzenoid Hydrocarbons. Axioms. 2024; 13(6):342. https://doi.org/10.3390/axioms13060342
Chicago/Turabian StyleHayat, Sakander, Azri Arfan, Asad Khan, Haziq Jamil, and Mohammed J. F. Alenazi. 2024. "An Optimization Problem for Computing Predictive Potential of General Sum/Product-Connectivity Topological Indices of Physicochemical Properties of Benzenoid Hydrocarbons" Axioms 13, no. 6: 342. https://doi.org/10.3390/axioms13060342
APA StyleHayat, S., Arfan, A., Khan, A., Jamil, H., & Alenazi, M. J. F. (2024). An Optimization Problem for Computing Predictive Potential of General Sum/Product-Connectivity Topological Indices of Physicochemical Properties of Benzenoid Hydrocarbons. Axioms, 13(6), 342. https://doi.org/10.3390/axioms13060342