Application of Gradient Optimization Methods in Defining Neural Dynamics
<p>Simulink implementation of GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo> </mrow> </semantics></math> evolution (<a href="#FD10-axioms-13-00049" class="html-disp-formula">10</a>).</p> "> Figure 2
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> </mrow> <msub> <mi>E</mi> <mi>G</mi> </msub> <msub> <mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>∥</mo> </mrow> <mi>F</mi> </msub> </mrow> </semantics></math> in GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mi>A</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> <mi>I</mi> <mo>,</mo> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mi>A</mi> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mo>)</mo> </mrow> </semantics></math> compared to GNN<math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mi>A</mi> <mo>,</mo> <msub> <mi>I</mi> <mn>4</mn> </msub> <mo>,</mo> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mo>)</mo> </mrow> </semantics></math> in Example 1.</p> "> Figure 3
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>−</mo> </mrow> <msup> <mi>V</mi> <mo>*</mo> </msup> <msub> <mrow> <mo>∥</mo> </mrow> <mi>F</mi> </msub> </mrow> </semantics></math> in GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mi>A</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> <mi>I</mi> <mo>,</mo> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mi>A</mi> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mo>)</mo> </mrow> </semantics></math> compared to GNN<math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mi>A</mi> <mo>,</mo> <msub> <mi>I</mi> <mn>4</mn> </msub> <mo>,</mo> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mo>)</mo> </mrow> </semantics></math> in Example 1.</p> "> Figure 4
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. Elementwise convergence trajectories <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>∈</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of the GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo> </mrow> </semantics></math> network in Example 2.</p> "> Figure 5
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> </mrow> <msub> <mi>E</mi> <mi>G</mi> </msub> <msub> <mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>∥</mo> </mrow> <mi>F</mi> </msub> </mrow> </semantics></math> in GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo> </mrow> </semantics></math> compared to GNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo> </mrow> </semantics></math> in Example 2.</p> "> Figure 6
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. <math display="inline"><semantics> <msub> <mrow> <mo>∥</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>∥</mo> </mrow> <mi>F</mi> </msub> </semantics></math> in GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo> </mrow> </semantics></math> compared to GNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo> </mrow> </semantics></math> in Example 2.</p> "> Figure 7
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>3</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> <mo>]</mo> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mo>]</mo> </mrow> </semantics></math>. <math display="inline"><semantics> <msub> <mrow> <mo>∥</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>∥</mo> </mrow> <mi>F</mi> </msub> </semantics></math> for different <math display="inline"><semantics> <mi>γ</mi> </semantics></math> in GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>I</mi> <mo>,</mo> <mi>A</mi> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mo>,</mo> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mo>)</mo> </mrow> </semantics></math> compared to GNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>I</mi> <mo>,</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>)</mo> </mrow> </semantics></math> in Example 3.</p> "> Figure 8
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> </mrow> <msub> <mi>E</mi> <mi>G</mi> </msub> <msub> <mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>∥</mo> </mrow> <mi>F</mi> </msub> </mrow> </semantics></math> in GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>I</mi> <mo>,</mo> <mi>A</mi> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mo>,</mo> <msup> <mi>A</mi> <mi mathvariant="normal">T</mi> </msup> <mo>)</mo> </mrow> </semantics></math> compared to GNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>I</mi> <mo>,</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>)</mo> </mrow> </semantics></math> in Example 3.</p> "> Figure 9
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. <math display="inline"><semantics> <msub> <mrow> <mo>∥</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>∥</mo> </mrow> <mi>F</mi> </msub> </semantics></math> in GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mn>1</mn> <mi mathvariant="normal">T</mi> </msubsup> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>,</mo> <msubsup> <mi>A</mi> <mn>1</mn> <mi mathvariant="normal">T</mi> </msubsup> <mi>D</mi> <mo>)</mo> </mrow> </semantics></math> compared to GNN<math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>,</mo> <mi>D</mi> <mo>)</mo> </mrow> </semantics></math> in Example 4.</p> "> Figure 10
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> </mrow> <msub> <mi>E</mi> <mi>G</mi> </msub> <msub> <mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>∥</mo> </mrow> <mi>F</mi> </msub> </mrow> </semantics></math> in GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <msubsup> <mi>A</mi> <mn>1</mn> <mi mathvariant="normal">T</mi> </msubsup> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>,</mo> <msubsup> <mi>A</mi> <mn>1</mn> <mi mathvariant="normal">T</mi> </msubsup> <mi>D</mi> <mo>)</mo> </mrow> </semantics></math> compared to GNN<math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>I</mi> <mn>3</mn> </msub> <mo>,</mo> <mi>D</mi> <mo>)</mo> </mrow> </semantics></math> in Example 4.</p> "> Figure 11
<p>Simulink implementation of (<a href="#FD25-axioms-13-00049" class="html-disp-formula">25</a>).</p> "> Figure 12
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> </mrow> <msub> <mi>E</mi> <mrow> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>B</mi> </mrow> </msub> <msub> <mrow> <mo>∥</mo> </mrow> <mi>F</mi> </msub> </mrow> </semantics></math> of HGZNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>I</mi> <mo>)</mo> </mrow> </semantics></math> compared to GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>I</mi> <mo>)</mo> </mrow> </semantics></math> and GZNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>I</mi> <mo>)</mo> </mrow> </semantics></math> in Example 6.</p> "> Figure 13
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power–sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> </mrow> <msup> <mi>A</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msub> <mrow> <mi>B</mi> <mo>−</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>∥</mo> </mrow> <mi>F</mi> </msub> </mrow> </semantics></math> of HGZNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>I</mi> <mo>)</mo> </mrow> </semantics></math> compared to GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>I</mi> <mo>)</mo> </mrow> </semantics></math> and GZNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>I</mi> <mo>)</mo> </mrow> </semantics></math> in Example 6.</p> "> Figure 14
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. Elementwise convergence trajectories of the HGZNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>B</mi> <mo>)</mo> </mrow> </semantics></math> network in Example 7.</p> "> Figure 15
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. <math display="inline"><semantics> <mrow> <mrow> <mo>∥</mo> </mrow> <msub> <mi>E</mi> <mrow> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>B</mi> </mrow> </msub> <msub> <mrow> <mo>∥</mo> </mrow> <mi>F</mi> </msub> </mrow> </semantics></math> of HGZNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>B</mi> <mo>)</mo> </mrow> </semantics></math> compared to GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>B</mi> <mo>)</mo> </mrow> </semantics></math> and GZNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>B</mi> <mo>)</mo> </mrow> </semantics></math> in Example 7.</p> "> Figure 16
<p>(<b>a</b>) Linear activation. (<b>b</b>) Power-sigmoid activation. (<b>c</b>) Smooth power–sigmoid activation. Frobenius norm of error matrix <math display="inline"><semantics> <mrow> <msup> <mi>A</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <mi>B</mi> <mo>−</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of HGZNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>B</mi> <mo>)</mo> </mrow> </semantics></math> compared to GGNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>B</mi> <mo>)</mo> </mrow> </semantics></math> and GZNN<math display="inline"><semantics> <mrow> <mo>(</mo> <mi>A</mi> <mo>,</mo> <mi>I</mi> <mo>,</mo> <mi>B</mi> <mo>)</mo> </mrow> </semantics></math> in Example 7.</p> ">
Abstract
:1. Introduction and Background
- A novel error function is proposed for the development of the GNN dynamical evolution.
- The GNN design based on the error function is developed and analyzed theoretically and numerically.
- A hybridization of GNN and ZNN dynamical systems based on the error matrix is proposed and investigated.
2. Motivation and Derivation of GGNN and GZNN Models
- 1.
- Linear function
- 2.
- Power-sigmoid activation function
- 3.
- Smooth power-sigmoid function
3. Convergence Analysis of GGNN Dynamics
4. Numerical Experiments on GNN and GGNN Dynamics
5. Mixed GGNN-GZNN Model for Solving Matrix Equations
- (a)
- Then, achieves global convergence and satisfies when , starting from any initial state . The state matrix of HGZNN is stable in the sense of Lyapunov.
- (b)
- The exponential convergence rate of the HGZNN model (25) in the linear case is equal to
- (c)
- The activation state variable matrix of the model HGZNN is convergent when with the equilibrium state matrix
- (b)
- From (a), it follows that
- (c)
- This part of the proof can be verified with the particular case of Theorem 2.
- (a)
- Then, achieves global convergence when , starting from any initial state . The state matrix of HGZNN is stable in the sense of Lyapunov.
- (b)
- (c)
- The activation state variable matrix of the model HGZNN is convergent when with the equilibrium state matrix
- (b)
- From (a), it follows
- (c)
- This part of the proof can be verified with the particular case of Theorem 2.
- (b) Let the matrices be given and satisfy , and let be the state matrix of (29) with an arbitrary nonlinear activation . Then, and .
- -
- HGZNN is always faster than GGNN;
- -
- HGZNN is faster than GZNN in the case where ;
- -
- GZNN is faster than GGNN in the case where .
- -
- HGZNN is always faster than GGNN;
- -
- HGZNN is faster than GZNN in the case where ;
- -
- GZNN is faster than GGNN in the case where .
Regularized HGZNN Model for Solving Matrix Equations
- (a)
- The state matrix of the model HGZNN converges globally to
- (b)
- The exponential convergence rate of HGZNN in the case where is equal to
- (c)
- Let be the limiting value of when . Then,
- (a)
- The state matrix of HGZNN converges globally to
- (b)
- The exponential convergence rate of HGZNN in the case where is equal to
- (c)
- Let be the limiting value of when . Then,
6. Numerical Examples on Hybrid Models
- 1.
- The gain parameter γ is the parameter with the most influence on the behavior of the observed dynamic systems. The general rule is “the parameter γ should be selected as large as possible”. The numerical confirmation of this fact is investigated in Figure 7.
- 2.
- The influence of γ and AFs is indisputable. The larger the value of γ, the faster the convergence. And, clearly, AFs increase convergence compared to the linear models. In the presented numerical examples, we investigate the influence of three AFs: linear, power-sigmoid and smooth power-sigmoid.
- 3.
- The right question is as follows: what makes the GGNN better than the GNN under fair conditions that assume an identical environment during testing? Numerical experiments show better performance of the GGNN design compared to the GNN with respect to all three tested criteria: , and . Moreover, Table 2 in Example 5 is aimed at convergence analysis. The general conclusion from the numerical data arranged in Table 2 is that the GGNN model is more efficient compared to the GNN in rank-deficient test matrices of larger order .
- 4.
- The convergence rate of the linear hybrid model depends on γ and the singular value , while the convergence rate of the hybrid model depends on γ and .
- 5.
- The convergence of the linear regularized hybrid model depends on γ, and the regularization parameter , while the convergence of the linear regularized hybrid model depends on γ, and λ.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Chen, K. Comparison on Zhang neural network and gradient neural network for time-varying linear matrix equation AXB = C solving. In Proceedings of the 2008 IEEE International Conference on Industrial Technology, Chengdu, China, 21–24 April 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, C.; Guo, D.; Zheng, J. Comparison on Zhang neural dynamics and gradient-based neural dynamics for online solution of nonlinear time-varying equation. Neural Comput. Appl. 2011, 20, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, P.; Tan, L. Further studies on Zhang neural-dynamics and gradient dynamics for online nonlinear equations solving. In Proceedings of the 2009 IEEE International Conference on Automation and Logistics, Shenyang, China, 5–7 August 2009; pp. 566–571. [Google Scholar] [CrossRef]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Applications, 2nd ed.; CMS Books in Mathematics; Springer: New York, NY, USA, 2003. [Google Scholar]
- Wang, G.; Wei, Y.; Qiao, S. Generalized Inverses: Theory and Computations; Science Press, Springer: Beijing, China, 2018. [Google Scholar]
- Dash, P.; Zohora, F.T.; Rahaman, M.; Hasan, M.M.; Arifuzzaman, M. Usage of Mathematics Tools with Example in Electrical and Electronic Engineering. Am. Sci. Res. J. Eng. Technol. Sci. (ASRJETS) 2018, 46, 178–188. [Google Scholar]
- Qin, F.; Lee, J. Dynamic methods for missing value estimation for DNA sequences. In Proceedings of the 2010 International Conference on Computational and Information Sciences, IEEE, Chengdu, China, 9–11 July 2010; pp. 442–445. [Google Scholar] [CrossRef]
- Soleimani, F.; Stanimirović, P.S.; Soleimani, F. Some matrix iterations for computing generalized inverses and balancing chemical equations. Algorithms 2015, 8, 982–998. [Google Scholar] [CrossRef]
- Udawat, B.; Begani, J.; Mansinghka, M.; Bhatia, N.; Sharma, H.; Hadap, A. Gauss Jordan method for balancing chemical equation for different materials. Mater. Today Proc. 2022, 51, 451–454. [Google Scholar] [CrossRef]
- Doty, K.L.; Melchiorri, C.; Bonivento, C. A theory of generalized inverses applied to robotics. Int. J. Robot. Res. 1993, 12, 1–19. [Google Scholar] [CrossRef]
- Li, L.; Hu, J. An efficient second-order neural network model for computing the Moore–Penrose inverse of matrices. IET Signal Process. 2022, 16, 1106–1117. [Google Scholar] [CrossRef]
- Wang, X.; Tang, B.; Gao, X.G.; Wu, W.H. Finite iterative algorithms for the generalized reflexive and anti-reflexive solutions of the linear matrix equation AXB = C. Filomat 2017, 31, 2151–2162. [Google Scholar] [CrossRef]
- Ding, F.; Chen, T. Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom. Control 2005, 50, 1216–1221. [Google Scholar] [CrossRef]
- Ding, F.; Zhang, H. Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems. IET Control Theory Appl. 2014, 8, 1588–1595. [Google Scholar] [CrossRef]
- Zhang, H. Quasi gradient-based inversion-free iterative algorithm for solving a class of the nonlinear matrix equations. Comput. Math. Appl. 2019, 77, 1233–1244. [Google Scholar] [CrossRef]
- Wang, J. Recurrent neural networks for computing pseudoinverses of rank-deficient matrices. SIAM J. Sci. Comput. 1997, 18, 1479–1493. [Google Scholar] [CrossRef]
- Fa-Long, L.; Zheng, B. Neural network approach to computing matrix inversion. Appl. Math. Comput. 1992, 47, 109–120. [Google Scholar] [CrossRef]
- Wang, J. A recurrent neural network for real-time matrix inversion. Appl. Math. Comput. 1993, 55, 89–100. [Google Scholar] [CrossRef]
- Wang, J. Recurrent neural networks for solving linear matrix equations. Comput. Math. Appl. 1993, 26, 23–34. [Google Scholar] [CrossRef]
- Wei, Y. Recurrent neural networks for computing weighted Moore–Penrose inverse. Appl. Math. Comput. 2000, 116, 279–287. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Y.; Li, K.; Liao, B.; Tan, Z. FA novel recurrent neural network and its finite-time solution to time-varying complex matrix inversion. Neurocomputing 2019, 331, 483–492. [Google Scholar] [CrossRef]
- Yi, C.; Chen, Y.; Lu, Z. Improved gradient-based neural networks for online solution of Lyapunov matrix equation. Inf. Process. Lett. 2011, 111, 780–786. [Google Scholar] [CrossRef]
- Yi, C.; Qiao, D. Improved neural solution for the Lyapunov matrix equation based on gradient search. Inf. Process. Lett. 2013, 113, 876–881. [Google Scholar]
- Xiao, L.; Li, K.; Tan, Z.; Zhang, Z.; Liao, B.; Chen, K.; Jin, L.; Li, S. Nonlinear gradient neural network for solving system of linear equations. Inf. Process. Lett. 2019, 142, 35–40. [Google Scholar] [CrossRef]
- Xiao, L. A finite-time convergent neural dynamics for online solution of time-varying linear complex matrix equation. Neurocomputing 2015, 167, 254–259. [Google Scholar] [CrossRef]
- Lv, X.; Xiao, L.; Tan, Z.; Yang, Z.; Yuan, J. Improved Gradient Neural Networks for solving Moore–Penrose Inverse of full-rank matrix. Neural Process. Lett. 2019, 50, 1993–2005. [Google Scholar] [CrossRef]
- Wang, J. Electronic realisation of recurrent neural network for solving simultaneous linear equations. Electron. Lett. 1992, 28, 493–495. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Tan, H.Z. Performance analysis of gradient neural network exploited for online time-varying matrix inversion. IEEE Trans. Autom. Control. 2009, 54, 1940–1945. [Google Scholar] [CrossRef]
- Wang, J.; Li, H. Solving simultaneous linear equations using recurrent neural networks. Inf. Sci. 1994, 76, 255–277. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, H. Nonlinear function activated GNN versus ZNN for online solution of general linear matrix equations. J. Frankl. Inst. 2023, 360, 7021–7036. [Google Scholar] [CrossRef]
- Tan, Z.; Hu, Y.; Chen, K. On the investigation of activation functions in gradient neural network for online solving linear matrix equation. Neurocomputing 2020, 413, 185–192. [Google Scholar] [CrossRef]
- Tan, Z. Fixed-time convergent gradient neural network for solving online sylvester equation. Mathematics 2022, 10, 3090. [Google Scholar] [CrossRef]
- Wang, D.; Liu, X.-W. A gradient-type noise-tolerant finite-time neural network for convex optimization. Neurocomputing 2022, 49, 647–656. [Google Scholar] [CrossRef]
- Stanimirović, P.S.; Petković, M.D. Gradient neural dynamics for solving matrix equations and their applications. Neurocomputing 2018, 306, 200–212. [Google Scholar] [CrossRef]
- Stanimirović, P.S.; Katsikis, V.N.; Li, S. Hybrid GNN-ZNN models for solving linear matrix equations. Neurocomputing 2018, 316, 124–134. [Google Scholar] [CrossRef]
- Sowmya, G.; Thangavel, P.; Shankar, V. A novel hybrid Zhang neural network model for time-varying matrix inversion. Eng. Sci. Technol. Int. J. 2022, 26, 101009. [Google Scholar] [CrossRef]
- Wu, W.; Zheng, B. Improved recurrent neural networks for solving Moore–Penrose inverse of real-time full-rank matrix. Neurocomputing 2020, 418, 221–231. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C. Gradient-Zhang neural network solving linear time-varying equations. In Proceedings of the 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 16–19 December 2022; pp. 396–403. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y. Theoretical Analysis of Gradient-Zhang Neural Network for Time-Varying Equations and Improved Method for Linear Equations. In Neural Information Processing; ICONIP 2023, Lecture Notes in Computer Science; Luo, B., Cheng, L., Wu, Z.G., Li, H., Li, C., Eds.; Springer: Singapore, 2024; Volume 14447. [Google Scholar] [CrossRef]
- Stanimirović, P.S.; Mourtas, S.D.; Katsikis, V.N.; Kazakovtsev, L.A. Krutikov, V.N. Recurrent neural network models based on optimization methods. Mathematics 2022, 10, 4292. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S. Numerical Optimization; Springer: New York, NY, USA, 1999. [Google Scholar]
- Stanimirović, P.S.; Petković, M.D.; Gerontitis, D. Gradient neural network with nonlinear activation for computing inner inverses and the Drazin inverse. Neural Process. Lett. 2017, 48, 109–133. [Google Scholar] [CrossRef]
- Smoktunowicz, A.; Smoktunowicz, A. Set-theoretic solutions of the Yang–Baxter equation and new classes of R-matrices. Linear Algebra Its Appl. 2018, 546, 86–114. [Google Scholar] [CrossRef]
- Baksalary, O.M.; Trenkler, G. On matrices whose Moore–Penrose inverse is idempotent. Linear Multilinear Algebra 2022, 70, 2014–2026. [Google Scholar] [CrossRef]
- Wang, X.Z.; Ma, H.; Stanimirović, P.S. Nonlinearly activated recurrent neural network for computing the Drazin inverse. Neural Process. Lett. 2017, 46, 195–217. [Google Scholar] [CrossRef]
- Wang, S.D.; Kuo, T.S.; Hsu, C.F. Trace bounds on the solution of the algebraic matrix Riccati and Lyapunov equation. IEEE Trans. Autom. Control 1986, 31, 654–656. [Google Scholar] [CrossRef]
Matrix A | Matrix B | Matrix D | Input and Residual Norm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 8 | 8 | 9 | 7 | 7 | 10 | 7 | 7 | 0.5 | 1.051 | |
10 | 8 | 6 | 9 | 7 | 7 | 10 | 7 | 7 | 0.5 | 1.318 | |
10 | 8 | 6 | 9 | 7 | 5 | 10 | 7 | 7 | 0.5 | 1.81 | |
10 | 8 | 6 | 9 | 7 | 5 | 10 | 7 | 5 | 5 | 2.048 | |
10 | 8 | 1 | 9 | 7 | 2 | 10 | 7 | 1 | 5 | 2.372 | |
20 | 10 | 10 | 8 | 5 | 5 | 20 | 5 | 5 | 5 | 1.984 | |
20 | 10 | 5 | 8 | 5 | 5 | 20 | 5 | 5 | 5 | 2.455 | |
20 | 10 | 5 | 8 | 5 | 2 | 20 | 5 | 5 | 1 | 3.769 | |
20 | 10 | 2 | 8 | 5 | 2 | 20 | 5 | 2 | 1 | 2.71 | |
20 | 15 | 15 | 5 | 2 | 2 | 20 | 2 | 2 | 1 | 1.1 | |
20 | 15 | 10 | 5 | 2 | 2 | 20 | 2 | 2 | 1 | 1.158 | |
20 | 15 | 10 | 5 | 2 | 1 | 20 | 2 | 2 | 1 | 2.211 | |
20 | 15 | 5 | 5 | 2 | 1 | 20 | 2 | 2 | 1 | 1.726 |
(GNN) | (GGNN) | (GNN) | (GGNN) | CPU (GNN) | CPU (GGNN) |
---|---|---|---|---|---|
1.393 | 0.03661 | 22.753954 | |||
1.899 | 0.03947 | 15.754537 | |||
2.082 | 0.00964 | 17.137916 | |||
2 | 2.003 | 21.645386 | |||
2.288 | 9.978 | 21.645386 | 13.255210 | ||
2.455 | 2.455 | 1.657 | 1.693 | 50.846893 | 19.059385 |
3.769 | 3.769 | 6.991 | 4.071 | 42.184748 | 13.722390 |
2.71 | 2.71 | 1.429 | 1.176 | 148.484258 | 13.527065 |
1.1 | 1.1 | 1.766 | 5.949 | 218.169376 | 17.5666568 |
1.158 | 1.158 | 2.747 | 2.981 | 45.505618 | 12.441782 |
2.211 | 2.211 | 7.942 | 8.963 | 194.605133 | 14.117241 |
1.726 | 1.726 | 8.042 | 3.207 | 22.340501 | 11.650829 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanimirović, P.S.; Tešić, N.; Gerontitis, D.; Milovanović, G.V.; Petrović, M.J.; Kazakovtsev, V.L.; Stasiuk, V. Application of Gradient Optimization Methods in Defining Neural Dynamics. Axioms 2024, 13, 49. https://doi.org/10.3390/axioms13010049
Stanimirović PS, Tešić N, Gerontitis D, Milovanović GV, Petrović MJ, Kazakovtsev VL, Stasiuk V. Application of Gradient Optimization Methods in Defining Neural Dynamics. Axioms. 2024; 13(1):49. https://doi.org/10.3390/axioms13010049
Chicago/Turabian StyleStanimirović, Predrag S., Nataša Tešić, Dimitrios Gerontitis, Gradimir V. Milovanović, Milena J. Petrović, Vladimir L. Kazakovtsev, and Vladislav Stasiuk. 2024. "Application of Gradient Optimization Methods in Defining Neural Dynamics" Axioms 13, no. 1: 49. https://doi.org/10.3390/axioms13010049
APA StyleStanimirović, P. S., Tešić, N., Gerontitis, D., Milovanović, G. V., Petrović, M. J., Kazakovtsev, V. L., & Stasiuk, V. (2024). Application of Gradient Optimization Methods in Defining Neural Dynamics. Axioms, 13(1), 49. https://doi.org/10.3390/axioms13010049