A New Criterion for Improving Convergence of Fuzzy C-Means Clustering
Abstract
:1. Introduction
- m: weighting exponent or fuzzy factor, m > 1;
- c: number of clusters in X;
- n: number of objects in X;
- ε: threshold value;
- i: index of objects;
- j: index of cluster;
- t: iteration count;
- T: maximum number of iterations;
- X = {x1, …, xn}: set of n objects to be partitioned according to a similarity criterion;
- U = {uij}: membership degree of object i to cluster j;
- V = {v1,…,vc}: set of centroids, where vj is the centroid of cluster j;
- distance from object xi to centroid vj using the Euclidean distance;
- ΔU: convergence criterion (the difference of the membership degrees values in two consecutive iterations);
- ΔV: convergence criterion (the difference of the centroids values in two consecutive iterations);
- ΔoldJm: convergence criterion (the difference of the objective function values in two consecutive iterations);
- ΔnewJm: new convergence criterion (the difference of the objective function values, in two consecutive iterations, expressed as a percentage of its value in the next to the last one).
Algorithm 1: FCM | |
Input: dataset X, c, m, ε, T | |
Output: V, U | |
1 | Initialization: |
2 | t: = 0; |
3 | ε: = 0.01; |
4 | U(t): = {u11, …, uij} is randomly generated; |
5 | Calculate centroids: |
6 | Calculate the centroids using Equation (6); |
7 | Calculate membership matrix: |
8 | Update and calculate the membership matrix using Equation (7); |
9 | Convergence: |
10 | If ΔU(t) < ε or t = T: |
11 | Stop the algorithm; |
12 | Otherwise: |
13 | U(t): = U(t + 1) and t: = t + 1; |
14 | Go to Calculate centroids |
15 | End of algorithm |
2. Related Work
2.1. Convergence
2.2. Improvements of the FCM Algorithm That Modify the Objective Function
3. Proposal
3.1. Proposal for a New Convergence Indicator
3.2. Method to Determine Threshold Values
Algorithm 2: P-FCM | |
Input: Dataset X, V, c, m, ε | |
Output: V, U | |
1 | Initialization: |
2 | t: = 0; |
3 | U(t): = {u11, …, uij} is randomly generated; |
4 | Calculate centroids: |
5 | Calculate the centroids using Equation (6); |
6 | Calculate membership matrix: |
7 | Update and calculate the membership matrix using Equation (7); |
8 | Convergence: |
9 | If ΔnewJm(t) ≤ ε: |
10 | Stop the algorithm; |
11 | Otherwise: |
12 | U(t): = U(t + 1) and t: = t + 1; |
13 | Go to Classification |
14 | End of algorithm |
4. Results
4.1. Experimental Environment
4.2. Description of the Datasets
4.3. Test Cases
4.3.1. Description of Experiment I
4.3.2. Description of Experiment II
4.3.3. Description of Experiment III
4.4. Experiment Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ajin, V.W.; Kumar, L.D. Big Data and Clustering Algorithms. In Proceedings of the 2016 International Conference on Research Advances in Integrated Navigation Systems (RAINS), Bangalore, India, 6–7 May 2016. [Google Scholar]
- Giordani, P.; Ferraro, M.B.; Martella, F. Big data and clustering. In An Introduction to Clustering with R; Springer: Singapore, 2020; pp. 111–121. [Google Scholar]
- Nayak, J.; Naik, B.; Behera, H.S. Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014. In Proceedings of the Computational Intelligence in Data Mining, New Delhi, India, 20–21 December 2014. [Google Scholar]
- Shukla, A.K.; Muhuri, P.K. Big-data clustering with interval type-2 fuzzy uncertainty modeling in gene expression datasets. Eng. Appl. Artif. Intell. 2019, 77, 268–282. [Google Scholar] [CrossRef]
- Pérez, J.; Roblero, S.S.; Almanza, N.N.; Solís, J.F.; Zavala, C.; Hernández, Y.; Landero, V. Hybrid Fuzzy C-Means clustering algorithm oriented to big data realms. Axioms 2022, 11, 377. [Google Scholar] [CrossRef]
- Pérez, J.; Rey, C.D.; Roblero, S.S.; Almanza, N.N.; Zavala, C.; García, S.; Landero, V. POFCM: A parallel fuzzy clustering algorithm for large datasets. Mathematics 2023, 11, 1920. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 2022, 110, 104743. [Google Scholar] [CrossRef]
- Miyamoto, S.; Ichihashi, H.; Honda, K. Algorithms for Fuzzy Clustering Methods in C-Means Clustering with Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 229. [Google Scholar]
- Atiyah, I.; Mohammadpour, A.; Taheri, S. KC-Means: A fast fuzzy clustering. Hindawi Adv. Fuzzy Syst. 2018, 2018, 34861. [Google Scholar] [CrossRef]
- Bezdek, J.C. Elementary Cluster Analysis: Four Basic Methods That (Usually) Work; River Publishers: Gistrup, Denmark, 2022. [Google Scholar]
- MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965. [Google Scholar]
- Bezdek, J.C. Fuzzy Mathematics in Pattern Classification. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1973. [Google Scholar]
- Bezdek, J.C.; Ehrlich, R.; Full, W.E. FCM: The Fuzzy C-Means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, S. Comparative analysis of K-Means and Fuzzy C-Means algorithms. Int. J. Adv. Comput. Sci. Appl. 2013, 4, 35–39. [Google Scholar] [CrossRef]
- Ruspini, E.H. A new approach to clustering. Inf. Control 1969, 15, 22–32. [Google Scholar] [CrossRef]
- Ruspini, E.H. Numerical methods for fuzzy clustering. Inf. Sci. 1970, 2, 319–350. [Google Scholar] [CrossRef]
- Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 1973, 3, 32–57. [Google Scholar] [CrossRef]
- Bezdek, J.C. Numerical taxonomy with fuzzy sets. J. Math. Biol. 1974, 1, 57–71. [Google Scholar] [CrossRef]
- Bezdek, J.C. Cluster validity with fuzzy sets. J. Cybern. 1974, 3, 58–73. [Google Scholar] [CrossRef]
- Bezdek, J.C.; Dunn, J. Optimal fuzzy partitions: A heuristic for estimating the parameters in a mixture of normal distributions. IEEE Trans. Comput. 1975, 24, 835–838. [Google Scholar] [CrossRef]
- Bezdek, J.C. Feature Selection for Binary Data: Medical Diagnosis with Fuzzy Sets. In Proceedings of the AFIPS ‘76: National Computer Conference and Exposition, New York, NY, USA, 7–10 June 1976. [Google Scholar]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Cannon, R.L.; Dave, J.V.; Bezdek, J.C. Efficient implementation of the Fuzzy C-Means clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Shi, M.; Wu, J.; Sun, W. A new Fuzzy C-Means clustering-based time series segmentation approach and its application on tunnel boring machine analysis. Mech. Syst. Signal Process. 2019, 133, 106279. [Google Scholar] [CrossRef]
- Ramze, M.; Lelieveldt, B.P.F.; Reiber, J.H.C. A new cluster validity index for the Fuzzy C-Mean. Pattern Recognit. Lett. 1998, 19, 237–246. [Google Scholar] [CrossRef]
- Shirkhorshidi, A.S.; Aghabozorgi, S.; Wah, T.Y.; Herawan, T. Big Data Clustering: A Review. In Proceedings of the Computational Science and Its Applications—ICCSA 2014, Guimaráes, Portugal, 30 June–3 July 2014. [Google Scholar]
- Singh, C.; Bala, A. A transform-based fast Fuzzy C-Means approach for high brain MRI segmentation accuracy. Appl. Soft Comput. 2019, 76, 156–173. [Google Scholar] [CrossRef]
- Pal, N.R.; Bezdek, J.C. On cluster validity for the Fuzzy C-Means model. IEEE Trans. Fuzzy Syst. 1995, 3, 370–379. [Google Scholar] [CrossRef]
- Stetco, A.; Zeng, X.J.; Keane, J. Fuzzy C-Means++: Fuzzy C-Means with effective seeding initialization. Expert Syst. Appl. 2015, 42, 7541–7548. [Google Scholar] [CrossRef]
- Hashemzadeh, M.; Golzari Oskouei, A.; Farajzadeh, N. New Fuzzy C-Means clustering method based on feature-weight and cluster-weight learning. Appl. Soft Comput. 2019, 78, 324–345. [Google Scholar] [CrossRef]
- Xing, H.-J.; Hu, B.-G. An adaptive Fuzzy C-Means clustering-based mixtures of experts model for unlabeled data classification. Neurocomputing 2008, 71, 1008–1021. [Google Scholar] [CrossRef]
- Gamino, F.; Hernández, I.V.; Rosales, A.J.; Gallegos, F.J.; Mújica, D.; Ramos, E.; Carvajal, B.E.; Kinani, J.M.V. Block-matching Fuzzy C-Means clustering algorithm for segmentation of color images degraded with Gaussian noise. Eng. Appl. Artif. Intell. 2018, 73, 31–49. [Google Scholar] [CrossRef]
- Cebeci, Z.; Yıldız, F. Comparison of K-Means and Fuzzy C-Means algorithms on different cluster structures. J. Agricultural Inform. 2015, 6, 13–23. [Google Scholar] [CrossRef]
- Kaur, P. Intuitionistic fuzzy sets based credibilistic Fuzzy C-Means clustering for medical image segmentation. Inter. J. Infor. Technol. 2017, 9, 345–351. [Google Scholar] [CrossRef]
- Tilson, L.V.; Excell, P.S.; Green, R.J. A Generalisation of the Fuzzy C-Means Clustering Algorithm. In Proceedings of the International Geoscience and Remote Sensing Symposium, Remote Sensing: Moving Toward the 21st Century, Edinburgh, UK, 12–16 September 1988. [Google Scholar]
- Wang, X.; Wang, Y.; Wang, L. Improving Fuzzy C-Means clustering based on feature-weight learning. Pattern Recognit. Lett. 2004, 25, 1123–1132. [Google Scholar] [CrossRef]
- Xue, Z.A.; Cen, F.; Wei, L.P. A Weighting Fuzzy Clustering Algorithm Based on Euclidean Distance. In Proceedings of the 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, China, 18–20 October 2008. [Google Scholar]
- Wan, R.; Yan, X.; Su, X. A Weighted Fuzzy Clustering Algorithm for Data Stream. In Proceedings of the 2008 ISECS International Colloquium on Computing, Communication, Control, and Management, Guangzhou, China, 3–4 August 2008. [Google Scholar]
- Pimentel, B.A.; de Souza, R.M.C.R. Multivariate Fuzzy C-Means algorithms with weighting. Neurocomputing 2016, 174, 946–965. [Google Scholar] [CrossRef]
- Du, X. A robust and high-dimensional clustering algorithm based on feature weight and entropy. Entropy 2023, 25, 510. [Google Scholar] [CrossRef] [PubMed]
- UCI Machine Learning Repository, University of California. Available online: https://archive.ics.uci.edu/ml/index.php (accessed on 22 October 2023).
- Mukhtaruddin, R.; Rahman, H.A.; Hassan, M.Y.; Jamian, J.J. Optimal hybrid renewable energy design in autonomous system using Iterative-Pareto-Fuzzy technique. Elect. Power Energy Syst. 2015, 64, 242–249. [Google Scholar] [CrossRef]
- Zhang, R.; Golovin, D. Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization. In Proceedings of the ICML’20: 37th International Conference on Machine Learning, Virtual, 13 July 2020. [Google Scholar]
- Liu, X.; Tong, X.; Liu, Q. Profiling Pareto Front with Multi-Objective Stein Variational Gradient Descent. In Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online, 6–14 December 2021. [Google Scholar]
- Kalimuthu, M.; Hayat, A.A.; Pathmakumar, T.; Rajesh Elara, M.; Wood, K.L. A deep reinforcement learning approach to optimal morphologies generation in reconfigurable tiling robots. Mathematics 2023, 11, 3893. [Google Scholar] [CrossRef]
- Pérez, J.; Almanza, N.N.; Romero, D. Balancing effort and benefit of K-Means clustering algorithms in big data realms. PLoS ONE 2018, 13, e0201874. [Google Scholar] [CrossRef]
- Bejarano, L.A.; Espitia, H.E.; Montenegro, C.E. Clustering analysis for the Pareto optimal front in multi-objective optimization. Computation 2022, 10, 37. [Google Scholar] [CrossRef]
- Vimala, S.V.; Vivekanandan, K. A Kullback–Leibler divergence-based Fuzzy C-Means clustering for enhancing the potential of an movie recommendation system. SN Appl. Sci. 2019, 1, 698. [Google Scholar] [CrossRef]
Ref. | Author | Year | ε | Convergence Criterion | ||
---|---|---|---|---|---|---|
T | ΔU | ΔV | ||||
[15,16] | Ruspini | 1969–1970 | — | ✓ | ||
[17] | Dunn | 1973 | 0.00001 | ✓ | ||
[12] | Bezdek | 1973 | 0.0001 | ✓ | ✓ | |
[18,19] | Bezdek | 1974 | 0.0001 | ✓ | ||
[20] | Bezdek | 1975 | 0.001 | ✓ | ✓ | |
[21] | Bezdek | 1976 | 0.01 | ✓ | ||
[22] | Bezdek | 1981 | 0.01 | ✓ | ||
[13] | Bezdek | 1984 | 0.01 | ✓ | ✓ | |
[23] | Bezdek | 1986 | 0.001 | ✓ | ✓ |
Iteration (t) | At | Bt | Dt | Ct | ΔnewJm(t) |
---|---|---|---|---|---|
13 | 4.45 | 0.59 | 5.81 | 96.25 | 2.36 |
14 | 4.79 | 0.66 | 5.69 | 96.92 | 2.71 |
15 | 5.13 | 0.56 | 5.72 | 97.48 | 2.34 |
… | … | … | … | … | … |
17 | 5.82 | 0.21 | 6.14 | 98.03 | 0.90 |
… | … | … | … | … | … |
29 | 9.93 | 0.03 | 9.98 | 99.01 | 0.15 |
… | … | … | … | … | … |
292 | 100 | 0.00 | 100 | 100 | 0.0024 |
Iteration | % Reduction Iterations | Ct | % Reduction Quality | Jm | ΔnewJm | ΔU |
---|---|---|---|---|---|---|
1 | 99.65 | -- | -- | 28.20 | -- | 0.99 |
-- | -- | -- | -- | -- | -- | -- |
14 | 95.20 | 96.92 | 3.08 | 5.56 | 2.71 | 0.44 |
15 | 94.86 | 97.48 | 2.52 | 5.43 | 2.34 | 0.42 |
-- | -- | -- | -- | -- | -- | -- |
17 | 94.18 | 98.03 | 1.96 | 5.30 | 0.90 | 0.22 |
-- | -- | -- | -- | -- | -- | -- |
29 | 90.07 | 99.01 | 0.99 | 5.07 | 0.15 | 0.06 |
-- | -- | -- | -- | -- | -- | -- |
292 | 0 | 100 | 0 | 4.84 | 0.0024 | 0.0094 |
Name | n | d | n × d |
---|---|---|---|
Abalone | 4177 | 7 | 29,239 |
Wine | 4898 | 11 | 53,878 |
Urban | 360,177 | 2 | 720,354 |
Iteration | % Reduction Iterations | Ct | % Reduction Quality | Jm | ΔnewJm | ΔU |
---|---|---|---|---|---|---|
1 | 99.27 | -- | -- | 207,288.90 | -- | 0.15 |
-- | -- | -- | -- | -- | -- | -- |
15 | 89.78 | 94.02 | 5.98 | 82,439.54 | 1.77 | 0.33 |
-- | -- | -- | -- | -- | -- | -- |
16 | 88.33 | 95.77 | 4.23 | 80,114.034 | 1.31 | 0.34 |
17 | 87.59 | 96.44 | 3.55 | 79,223.43 | 1.11 | 0.29 |
-- | -- | -- | -- | -- | -- | -- |
19 | 86.13 | 97.36 | 2.64 | 77,997.14 | 0.67 | 0.27 |
-- | -- | -- | -- | -- | -- | -- |
22 | 83.94 | 98.17 | 1.83 | 76,925.08 | 0.39 | 0.16 |
-- | -- | -- | -- | -- | -- | -- |
27 | 80.29 | 99.01 | 0.99 | 75,819.27 | 0.26 | 0.12 |
-- | -- | -- | -- | -- | -- | -- |
137 | 0 | 100 | 0 | 74,500.37 | 0.0007 | 0.0098 |
Iteration | % Reduction Iterations | Ct | % Reduction Quality | Jm | ΔnewJm | ΔU |
---|---|---|---|---|---|---|
1 | 99 | -- | -- | 26,283.06 | -- | 0.56 |
-- | -- | -- | -- | -- | -- | -- |
17 | 83 | 90.69 | 9.32 | 7637.21 | 5.51 | 0.97 |
18 | 82 | 91.49 | 8.51 | 7473.50 | 2.14 | 0.54 |
-- | -- | -- | -- | -- | -- | -- |
20 | 80 | 92.16 | 7.84 | 7335.26 | 0.66 | 0.23 |
-- | -- | -- | -- | -- | -- | -- |
22 | 78 | 93.01 | 6.99 | 7161.84 | 1.57 | 0.33 |
-- | -- | -- | -- | -- | -- | -- |
24 | 76 | 94.32 | 5.68 | 6891.88 | 1.33 | 0.28 |
-- | -- | -- | -- | -- | -- | -- |
26 | 74 | 95.50 | 4.49 | 6648.03 | 2.01 | 0.42 |
-- | -- | -- | -- | -- | -- | -- |
28 | 72 | 96.30 | 3.69 | 6483.56 | 1.1688 | 0.39 |
-- | -- | -- | -- | -- | -- | -- |
31 | 69 | 97.27 | 2.72 | 6284.52 | 1.0735 | 0.29 |
-- | -- | -- | -- | -- | -- | -- |
43 | 67 | 98.04 | 1.96 | 6127.57 | 0.15 | 0.32 |
-- | -- | -- | -- | -- | -- | -- |
73 | 27 | 99.26 | 0.73 | 5876.32 | 1.04 | 0.32 |
-- | -- | -- | -- | -- | -- | -- |
100 | 0 | 100 | 0 | 5724.92 | 0.0001 | 0.0087 |
Execution | Iteration | % Reduction Iterations | Ct | % Reduction Quality | Jm | ΔnewJm | ΔU |
---|---|---|---|---|---|---|---|
1 | 11 | 93.03 | 96.18 | 3.82 | 5.70 | 4.46 | 0.73 |
2 | 14 | 95.21 | 96.92 | 3.08 | 5.56 | 2.71 | 0.44 |
3 | 15 | 95.57 | 96.52 | 3.48 | 5.61 | 2.03 | 0.48 |
4 | 14 | 95.64 | 97.04 | 2.96 | 5.52 | 2.33 | 0.67 |
5 | 16 | 95.69 | 96.98 | 3.02 | 5.54 | 1.90 | 0.62 |
Average | 5.58 | 2.68 | 0.58 |
Execution | Iteration | % Reduction Iterations | Ct | % Reduction Quality | Jm | ΔnewJm | ΔU |
---|---|---|---|---|---|---|---|
1 | 14 | 89.79 | 94.02 | 5.98 | 82,439.54 | 1.77 | 0.33 |
2 | 13 | 89.17 | 92.75 | 7.25 | 84,076.47 | 2.33 | 0.38 |
3 | 10 | 87.35 | 88.94 | 11.06 | 89,294.37 | 2.57 | 0.43 |
4 | 10 | 86.31 | 89.22 | 10.78 | 88,774.58 | 2.73 | 0.44 |
5 | 13 | 88.89 | 93.31 | 6.69 | 83,474.63 | 2.04 | 0.35 |
Average | 85,611.91 | 2.28 | 0.38 |
Execution | Iteration | % Reduction Iterations | Ct | % Reduction Quality | Jm | ΔnewJm | ΔU |
---|---|---|---|---|---|---|---|
1 | 17 | 83.00 | 90.69 | 9.31 | 7637.21 | 5.51 | 0.97 |
2 | 15 | 83.15 | 88.81 | 11.19 | 8518.01 | 8.66 | 0.77 |
3 | 14 | 77.05 | 84.30 | 15.70 | 9100.69 | 10.29 | 0.79 |
4 | 15 | 77.28 | 87.70 | 12.30 | 8421.65 | 8.40 | 0.81 |
5 | 16 | 80.25 | 90.79 | 9.21 | 7598.11 | 6.30 | 0.51 |
Average | 8255.13 | 7.83 | 0.77 |
Execution | Iteration | % Reduction Iterations | Ct | % Reduction Quality | Jm | ΔnewJm | ΔU |
---|---|---|---|---|---|---|---|
1 | 17 | 89.25 | 99.06 | 0.94 | 5.04 | 0.82 | 0.15 |
2 | 29 | 90.07 | 99.01 | 0.99 | 5.07 | 0.15 | 0.06 |
3 | 52 | 84.62 | 99.01 | 0.99 | 5.06 | 0.13 | 0.08 |
4 | 31 | 90.35 | 99.01 | 0.99 | 5.06 | 0.16 | 0.11 |
5 | 51 | 86.29 | 99.02 | 0.98 | 5.06 | 0.14 | 0.09 |
Average | 5.05 | 0.28 | 0.09 |
Execution | Iteration | % Reduction Iterations | Ct | % Reduction Quality | Jm | ΔnewJm | ΔU |
---|---|---|---|---|---|---|---|
1 | 27 | 80.29 | 99.01 | 0.99 | 75,819.27 | 0.25 | 0.12 |
2 | 29 | 75.84 | 99.01 | 0.99 | 75,739.98 | 0.21 | 0.12 |
3 | 24 | 69.63 | 99.04 | 0.96 | 75,860.19 | 0.44 | 0.16 |
4 | 26 | 64.39 | 99.03 | 0.97 | 75,734.01 | 0.34 | 0.13 |
5 | 25 | 78.64 | 99.01 | 0.99 | 75,903.72 | 0.26 | 0.12 |
Average | 75,811.43 | 0.30 | 0.13 |
Execution | Iteration | % Reduction Iterations | Ct | % Reduction Quality | Jm | ΔnewJm | ΔU |
---|---|---|---|---|---|---|---|
1 | 73 | 27.00 | 99.26 | 0.74 | 5876.32 | 1.04 | 0.32 |
2 | 63 | 29.22 | 99.04 | 0.96 | 6472.90 | 0.14 | 0.24 |
3 | 39 | 36.07 | 99.12 | 0.88 | 6079.84 | 0.48 | 0.52 |
4 | 51 | 22.73 | 99.13 | 0.87 | 6094.44 | 0.60 | 0.33 |
5 | 50 | 38.28 | 99.01 | 0.99 | 5906.22 | 0.23 | 0.09 |
Average | 6085.94 | 0.49 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Ortega, J.; Moreno-Calderón, C.F.; Roblero-Aguilar, S.S.; Almanza-Ortega, N.N.; Frausto-Solís, J.; Pazos-Rangel, R.; Rodríguez-Lelis, J.M. A New Criterion for Improving Convergence of Fuzzy C-Means Clustering. Axioms 2024, 13, 35. https://doi.org/10.3390/axioms13010035
Pérez-Ortega J, Moreno-Calderón CF, Roblero-Aguilar SS, Almanza-Ortega NN, Frausto-Solís J, Pazos-Rangel R, Rodríguez-Lelis JM. A New Criterion for Improving Convergence of Fuzzy C-Means Clustering. Axioms. 2024; 13(1):35. https://doi.org/10.3390/axioms13010035
Chicago/Turabian StylePérez-Ortega, Joaquín, Carlos Fernando Moreno-Calderón, Sandra Silvia Roblero-Aguilar, Nelva Nely Almanza-Ortega, Juan Frausto-Solís, Rodolfo Pazos-Rangel, and José María Rodríguez-Lelis. 2024. "A New Criterion for Improving Convergence of Fuzzy C-Means Clustering" Axioms 13, no. 1: 35. https://doi.org/10.3390/axioms13010035
APA StylePérez-Ortega, J., Moreno-Calderón, C. F., Roblero-Aguilar, S. S., Almanza-Ortega, N. N., Frausto-Solís, J., Pazos-Rangel, R., & Rodríguez-Lelis, J. M. (2024). A New Criterion for Improving Convergence of Fuzzy C-Means Clustering. Axioms, 13(1), 35. https://doi.org/10.3390/axioms13010035