Existence, Uniqueness and the Multi-Stability Results for a -Hilfer Fractional Differential Equation
Abstract
:1. Introduction
2. Preliminaries
2.1. On Fractional Derivatives
2.2. On the Alternative Theory
2.3. On Aggregation Maps and Special Functions
- (i)
- it is nondecreasing in each variable;
- (ii)
- it satisfies the boundary conditions
- The geometric mean function and the arithmetic mean function are, respectively, given by
- For every the projection function and the order statistic function related to the argument, are correspondingly given byThe projections onto the first and the last coordinates are given byLikewise, the extreme order statistics and are correspondingly the minimum and maximum functionsSimilarly, the median of odd numbers of values is simply given byFor an even number of values the median is given byFor every we also define the -median, by
- For every the partial minimum and the partial maximum associated with K, are, respectively, given by
- For every weight vector s.t. the weighted arithmetic mean function
- The sum and product functions are correspondingly given by
- The one-parameter Mittag-Leffler function [20],
3. Existence, Uniqueness and Multi-Stability
4. Example
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aderyani, S.R.; Saadati, R. Stability and controllability results by n-ary aggregation functions in matrix valued fuzzy n-normed spaces. Inf. Sci. 2023, 643, 119265. [Google Scholar] [CrossRef]
- Kurač, Z. Transfer-stable aggregation functions: Applications, challenges, and emerging trends. Decis. Anal. J. 2023, 7, 100210. [Google Scholar] [CrossRef]
- Halaš, R.; Mesiar, R.; Pócs, J. On the number of aggregation functions on finite chains as a generalization of Dedekind numbers. Fuzzy Sets Syst. 2023, 466, 108441. [Google Scholar] [CrossRef]
- Ulam, S.M. Problem in Modern Mathematics; Science Editors; Willey: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of linear functional equation. Proc. Natl. Acad. Sci. USA 1924, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Rassia, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Alsina, C.; Ger, R. On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 1998, 2, 373–380. [Google Scholar] [CrossRef]
- Algifiary, Q.H.; Jung, S. Laplace transform and generalized Hyers-Ulam stability of linear differential equation. Electron. J. Differ. Equ. 2014, 2014, 1–11. [Google Scholar]
- Razaei, H.; Jung, S.; Rassias, T.M. Laplace transform and Hyers-Ulam stability of linear differential equation. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Wu, G.; Baleanu, D. Stability analysis of impulsive fractional difference equations. Fract. Calc. Appl. Anal. 2018, 21, 354–375. [Google Scholar] [CrossRef]
- Wu, G.; Baleanu, D.; Huang, L. Novel Mittag-Leffler stability of linear fractional delay difference equations with impluse. Appl. Math. Lett. 2018, 82, 71–78. [Google Scholar] [CrossRef]
- Wu, G.; Abdeljawad, T.; Liu, J.; Baleanu, D.; Wu, K. Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique. Nonlinear Anal. Model. Control 2019, 24, 919–936. [Google Scholar] [CrossRef]
- Srivastava, H.M.; da Costa Sousa, J.V. Multiplicity of Solutions for Fractional-Order Differential Equations via the κ(x)-Laplacian Operator and the Genus Theory. Fractal Fract. 2022, 6, 481. [Google Scholar] [CrossRef]
- Mihet, D. On the stability of the additive Cauchy functional equation in random normed spaces. Appl. Math. Lett. 2011, 24, 2005–2009. [Google Scholar] [CrossRef] [Green Version]
- Park, C. Stability of some set-valued functional equations. Appl. Math. Lett. 2011, 24, 1910–1914. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull Amer Math Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Rezaei Aderyani, S.; Saadati, R.; Li, C.; Rassias, T.M.; Park, C. Special functions and multi-stability of the Jensen type random operator equation in C*-algebras via fixed point. J. Inequalities Appl. 2023, 2023, 35. [Google Scholar] [CrossRef]
- Grabisch, M.; Marichal, J.L.; Mesiar, R.; Pap, E. Aggregation Functions; Cambridge University Press: Cambridge, MA, USA, 2009; Volume 127. [Google Scholar]
- Harikrishnan, S.; Elsayed, E.M.; Kanagarajan, K.; Vivek, D. A study of Hilfer-Katugampola type pantograph equations with complex order. Ex. Counterexamples 2022, 2, 100045. [Google Scholar] [CrossRef]
- Li, C.; Nonlaopon, K.; Hrytsenko, A.; Beaudin, J. On the analytic and approximate solutions for the fractional nonlinear Schrödinger equations. J. Nonlinear Sci. Appl. 2023, 16, 51–59. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aderyani, S.R.; Saadati, R.; Rassias, T.M.; Srivastava, H.M.
Existence, Uniqueness and the Multi-Stability Results for a
Aderyani SR, Saadati R, Rassias TM, Srivastava HM.
Existence, Uniqueness and the Multi-Stability Results for a
Aderyani, Safoura Rezaei, Reza Saadati, Themistocles M. Rassias, and Hari M. Srivastava.
2023. "Existence, Uniqueness and the Multi-Stability Results for a
Aderyani, S. R., Saadati, R., Rassias, T. M., & Srivastava, H. M.
(2023). Existence, Uniqueness and the Multi-Stability Results for a