Some Stability Results and Existence of Solutions for a Backward Differential Equation with Time Advance via ζ—Caputo Fractional Derivative
<p>The exact solution and the numerical solution for a time step <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 2
<p>The numerical solution <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="bold">u</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mi>e</mi> <mo>]</mo> </mrow> </semantics></math>, with the initial condition <math display="inline"><semantics> <mrow> <mi>φ</mi> <mo>(</mo> <mi>e</mi> <mo>−</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mi>e</mi> <mo>,</mo> <mi>e</mi> <mo>+</mo> <mi>r</mi> <mo>]</mo> </mrow> </semantics></math>.</p> "> Figure 3
<p>The numerical solution <math display="inline"><semantics> <mrow> <msup> <mi mathvariant="bold">u</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and the numerical solution <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mi>e</mi> <mo>]</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>The difference <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msup> <mi mathvariant="bold">u</mi> <mo>*</mo> </msup> <mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>−</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> and the curve of the function <math display="inline"><semantics> <mrow> <mi>ε</mi> <mi>γ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msubsup> <mi>M</mi> <mrow> <mi>e</mi> </mrow> <mrow> <mn>0.75</mn> <mo>,</mo> <mi>ζ</mi> </mrow> </msubsup> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mi>e</mi> <mo>]</mo> </mrow> </semantics></math>.</p> "> Figure 5
<p>We plotted the solution <math display="inline"><semantics> <msup> <mi mathvariant="bold">u</mi> <mo>*</mo> </msup> </semantics></math> of Equation (<a href="#FD17-axioms-12-00581" class="html-disp-formula">17</a>) for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mi>e</mi> <mo>]</mo> </mrow> </semantics></math>, and the corresponding initial condition <math display="inline"><semantics> <mrow> <mi mathvariant="bold">u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>φ</mi> <mo>(</mo> <mn>2</mn> <mi>e</mi> <mo>−</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>2</mn> <mi>e</mi> <mo>,</mo> <mn>2</mn> <mi>e</mi> <mo>+</mo> <mi>r</mi> <mo>]</mo> </mrow> </semantics></math>.</p> "> Figure 6
<p>We plotted the solution <math display="inline"><semantics> <msup> <mi mathvariant="bold">u</mi> <mo>*</mo> </msup> </semantics></math> of Equation (<a href="#FD17-axioms-12-00581" class="html-disp-formula">17</a>) and the solution <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of the inequality (<a href="#FD5-axioms-12-00581" class="html-disp-formula">5</a>), for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mi>e</mi> <mo>]</mo> </mrow> </semantics></math>, with the same initial condition <math display="inline"><semantics> <mrow> <mi mathvariant="bold">u</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>φ</mi> <mo>(</mo> <mn>2</mn> <mi>e</mi> <mo>−</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>2</mn> <mi>e</mi> <mo>,</mo> <mn>2</mn> <mi>e</mi> <mo>+</mo> <mi>r</mi> <mo>]</mo> </mrow> </semantics></math>.</p> "> Figure 7
<p>We plotted both the difference <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msup> <mi mathvariant="bold">u</mi> <mo>*</mo> </msup> <mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>−</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> and the horizontal line <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>ε</mi> <msubsup> <mi>M</mi> <mrow> <mn>2</mn> <mi>e</mi> </mrow> <mrow> <mn>0.7</mn> <mo>,</mo> <mi>ζ</mi> </mrow> </msubsup> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mi>e</mi> <mo>]</mo> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
- ⋄
- The presentation a new problem defined by a backward differential equation with time advance via Caputo fractional derivative.
- ⋄
- The study of the existence and uniqueness of solutions for the backward differential equation with time advance via Caputo fractional derivative by using Banach fixed-point Theorem.
- ⋄
- Study of the UHR and UH stabilities for the backward differential equation with time advance via Caputo fractional derivative.
- ⋄
- Numerical implementations.
2. Preliminaries and Definitions
- The space defined by:
- The Banach space of continuous functions defined from into .
- The Banach space of continuous functions defined from into , where .
3. Main Results
4. Numerical Illustration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Telli, B.; Souid, M.S.; Stamova, I. Boundary-Value Problem for Nonlinear Fractional Differential Equations of Variable Order with Finite Delay via Kuratowski Measure of Noncompactness. Axioms 2021, 12, 80. [Google Scholar] [CrossRef]
- Arfaoui, H.; Ben Makhlouf, A. Some results for a class of two-dimensional fractional hyperbolic differential systems with time delay. J. Appl. Math. Comput. 2022, 68, 2389–2405. [Google Scholar] [CrossRef] [PubMed]
- Raja, M.M.; Vijayakumar, V. Approximate controllability results for the Sobolev type fractional delay impulsive integrodifferential inclusions of order r∈(1,2) via sectorial operator. Fract. Calc. Appl. Anal. 2023, 2023. [Google Scholar] [CrossRef]
- Houas, M.; Martinez, F.; Samei, M.E.; Kaabar, M.K.A. Uniqueness and Ulam-Hyers-Rassias stability results for sequential fractional pantograph q-differential equations. J. Inequalities Appl. 2022, 2022, 1–24. [Google Scholar] [CrossRef]
- Du, F.; Lu, J.G. Finite-time stability of fractional-order fuzzy cellular neural networks with time delays. Fuzzy Sets Syst. 2022, 438, 107–122. [Google Scholar] [CrossRef]
- Elshenhab, A.M.; Wang, X.; Cesarano, C.; Almarri, B.; Moaaz, O. Finite-Time Stability Analysis of Fractional Delay Systems. Mathematics 2022, 10, 1883. [Google Scholar] [CrossRef]
- Hanan, A.; Wahasha; Satish, K.; Panchala; Mohammed, S.; Abdob. Existence and stability of a nonlinear fractional differential equation involving a ζ-Caputo operator. Adv. Theory Nonlinear Anal. Its Appl. 2020, 4, 266–278. [Google Scholar] [CrossRef]
- Ahmadova, A.; Mahmudov, N.I. Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations. Stat. Probab. Lett. 2020, 168, 108949. [Google Scholar] [CrossRef]
- Kahouli, O.; Ben Makhlouf, A.; Mchiri, L.; Rguigui, H. Hyers-Ulam stability for a class of Hadamard fractional Itô-Doob stochastic integral equations. Chaos Solitons Fractals 2023, 166, 112918. [Google Scholar] [CrossRef]
- Ben Makhlouf, A.; Boucenna, D. Ulam-Hyers-Rassias Mittag-Leffler stability for the Darboux problem for partial fractional differential equations. Rocky Mountain J. Math. 2021, 51, 1541–1551. [Google Scholar] [CrossRef]
- Selvam, A.P.; Vellappandi, M.; Govindaraj, V. Controllability of fractional dynamical systems with ζ--Caputo fractional derivative. Phys. Scr. 2023, 98, 025206. [Google Scholar] [CrossRef]
- Mophou, G. Controllability of a backward fractional semilinear differential equation. Appl. Math. Comput. 2014, 242, 168–178. [Google Scholar] [CrossRef]
- Vigya; Mahto, T.; Malik, H.; Mukherjee, V.; Alotaibi, M.A.; Almutairi, A. Renewable generation based hybrid power system control using fractional order-fuzzy controller. Energy Rep. 2021, 7, 641–653. [Google Scholar] [CrossRef]
- Mirrezapour, S.Z.; Zare, A.; Hallaji, M. A new fractional sliding mode controller based on nonlinear fractional-order proportional integral derivative controller structure to synchronize fractional-order chaotic systems with uncertainty and disturbances. J. Vib. Control. 2021, 28, 773–785. [Google Scholar] [CrossRef]
- Hassani, H.; Tenreiro Machado, J.A.; Avazzadeh, Z.; Naraghirad, E.; Dahaghin, M.S. Generalized Bernoulli Polynomials: Solving Nonlinear 2D Fractional Optimal Control Problems. J. Sci. Comput. 2020, 83, 1–21. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Higazy, M.; Allehiany, F.M.; Mahmoud, E.E. Numerical study of fractional order COVID-19 pandemic transmission model in context of ABO blood group. Results Phys. 2021, 22, 103852. [Google Scholar] [CrossRef]
- Moustafa, M.; Mohd, M.H.; Ismail, A.I.; Abdullah, F.A. Global stability of a fractional order eco-epidemiological system with infected prey. Int. J. Math. Model. Numer. Optim. 2021. [Google Scholar] [CrossRef]
- Cardoso, L.C.; Camargo, R.F.; Dos Santos, F.L.P.; Dos Santos, P.C. Global stability analysis of a fractional differential system in hepatitis B. Chaos Solitons Fractals 2021, 143, 110619. [Google Scholar] [CrossRef]
- Wang, X.; Luo, D.; Luo, Z.; Zada, A. Ulam-Hyers Stability of Caputo-Type Fractional Stochastic Differential Equations with Time Delays. Math. Probl. Eng. 2021, 2021, 5599206. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M. Darboux problem for perturbed partial differential equations of fractional order with finite delay. Nonlinear Anal. Hybrid Syst. 2020, 381, 68–77. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Cabada, A. Partial neutral functional integro-differential equations of fractional order with delay. Bound. Value Probl. 2012, 2012, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Benchohra, M.; Hellal, M. Global uniqueness results for fractional partial hyperbolic differential equations with state-dependent delay. Ann. Pol. Math. 2014, 110, 259–281. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Makhlouf, A.; Mchiri, L.; Rhaima, M. Some Stability Results and Existence of Solutions for a Backward Differential Equation with Time Advance via ζ—Caputo Fractional Derivative. Axioms 2023, 12, 581. https://doi.org/10.3390/axioms12060581
Ben Makhlouf A, Mchiri L, Rhaima M. Some Stability Results and Existence of Solutions for a Backward Differential Equation with Time Advance via ζ—Caputo Fractional Derivative. Axioms. 2023; 12(6):581. https://doi.org/10.3390/axioms12060581
Chicago/Turabian StyleBen Makhlouf, Abdellatif, Lassaad Mchiri, and Mohamed Rhaima. 2023. "Some Stability Results and Existence of Solutions for a Backward Differential Equation with Time Advance via ζ—Caputo Fractional Derivative" Axioms 12, no. 6: 581. https://doi.org/10.3390/axioms12060581