Analysis of the Solution of a Model of SARS-CoV-2 Variants and Its Approximation Using Two-Step Lagrange Polynomial and Euler Techniques
<p>Schematic diagram of Model (<a href="#FD1-axioms-12-00480" class="html-disp-formula">1</a>), with <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced separators="" open="(" close=")"> <mfrac> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi mathvariant="script">I</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>ϕ</mi> <mrow> <mn>1</mn> <mi>v</mi> </mrow> </msub> <msubsup> <mi mathvariant="script">I</mi> <mrow> <mn>1</mn> </mrow> <mi>v</mi> </msubsup> <mo>+</mo> <msub> <mi>θ</mi> <mn>1</mn> </msub> <msub> <mi mathvariant="script">H</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> <mi mathvariant="script">N</mi> </mfrac> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mn>2</mn> </msub> <mo>=</mo> <mfenced separators="" open="(" close=")"> <mfrac> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi mathvariant="script">I</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>ϕ</mi> <mrow> <mn>2</mn> <mi>v</mi> </mrow> </msub> <msubsup> <mi mathvariant="script">I</mi> <mrow> <mn>2</mn> </mrow> <mi>v</mi> </msubsup> <mo>+</mo> <msub> <mi>θ</mi> <mn>2</mn> </msub> <msub> <mi mathvariant="script">H</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mi mathvariant="script">N</mi> </mfrac> </mfenced> </mrow> </semantics></math>.</p> "> Figure 2
<p>Fitting the model to data.</p> "> Figure 3
<p>Simulations of the various classes comparing the two-step Lagrange polynomial method and the fractional Euler method. Here, the fractional order is <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math>, and the step size <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>.</p> "> Figure 3 Cont.
<p>Simulations of the various classes comparing the two-step Lagrange polynomial method and the fractional Euler method. Here, the fractional order is <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math>, and the step size <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Simulations of the various classes comparing the two-step Lagrange polynomial method and the fractional Euler method. Here, the fractional order is <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math>, and the step size <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 4 Cont.
<p>Simulations of the various classes comparing the two-step Lagrange polynomial method and the fractional Euler method. Here, the fractional order is <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math>, and the step size <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Simulations of the various classes of System (<a href="#FD1-axioms-12-00480" class="html-disp-formula">1</a>) assessing the impact of vaccination using the two-step Lagrange polynomial method. Here, the fractional order is <math display="inline"><semantics> <mrow> <mi>ζ</mi> <mo>=</mo> <mn>0.96</mn> </mrow> </semantics></math>, and the step size <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Simulations of the various classes of System (<a href="#FD1-axioms-12-00480" class="html-disp-formula">1</a>) assessing the impact of fractional order using the two-step Lagrange polynomial method. Here, the step size <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 6 Cont.
<p>Simulations of the various classes of System (<a href="#FD1-axioms-12-00480" class="html-disp-formula">1</a>) assessing the impact of fractional order using the two-step Lagrange polynomial method. Here, the step size <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Simulations of the reproduction number for Delta variant for System (<a href="#FD1-axioms-12-00480" class="html-disp-formula">1</a>) assessing the impact of different parameters.</p> "> Figure 7 Cont.
<p>Simulations of the reproduction number for Delta variant for System (<a href="#FD1-axioms-12-00480" class="html-disp-formula">1</a>) assessing the impact of different parameters.</p> "> Figure 8
<p>Simulations of the reproduction number for Omicron variant for System (<a href="#FD1-axioms-12-00480" class="html-disp-formula">1</a>) assessing the impact of different parameters.</p> "> Figure 8 Cont.
<p>Simulations of the reproduction number for Omicron variant for System (<a href="#FD1-axioms-12-00480" class="html-disp-formula">1</a>) assessing the impact of different parameters.</p> ">
Abstract
:1. Introduction
- (i).
- The consideration and analysis of a novel model for SARS-CoV-2 with two variants. The new model incorporates variability in transmission due to vaccination history;
- (ii).
- The study of necessary conditions for the existence and uniqueness of the solution of the model;
- (iii).
- The provision of proof of the Ulam–Hyers stability result;
- (iv).
- The evaluation of the fractional system numerically using the two-step Lagrange polynomial and fractional Euler methods;
- (v).
- Highlighting the impact of vaccination and the fractional-order derivative.
2. Model Formulation
Model’s Basic Properties
3. Existence and Uniqueness of The Solution
3.1. Existence
- (i).
- , whenever ;
- (ii).
- is a contraction;
- (iii).
- is compact and continuous;
3.2. Uniqueness
3.3. The Basic Reproduction Number of the Model
3.4. Local Asymptotic Stability of the Disease-Free Equilibrium (DFE) of the Model
4. Ulam–Hyers Stability
- (i).
- .
- (ii).
- , .
5. Numerical Scheme
5.1. Two-Step Lagrange Polynomial Method
5.2. Fractional Euler Method
6. Simulations of the SARS-CoV-2 Model (1)
6.1. Baseline Values and Initial Conditions
6.2. Model Fitting
6.3. Numerical Assessment
7. Conclusions
- (i).
- The proposed fractional-order system was shown to be positively invariant using Theorem 1.
- (ii).
- Conditions for the existence of a solution to the fractional-order system were obtained using Theorems 2 and 3, while the uniqueness result was presented using Theorem 4.
- (iii).
- The designed model was also shown to be generalized Ulam–Hyers stable with the help of Theorem 6.
- (iv).
- The proposed model fits well to data when the order of the fractional derivative is taken as , as can be observed in Figure 2.
- (v).
- (vi).
- It was observed that increasing the vaccination rate from to caused a significant decrease in the number of people infected with the Omicron SARS-CoV-2 variant, as can be seen in Figure 5a–c.
- (vii).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- United States Food and Drug Administration. FDA Takes Key Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine. 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19 (accessed on 17 June 2021).
- Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Authorized in the United States. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html (accessed on 14 July 2021).
- Tang, P.; Hasan, M.R.; Chemaitelly, H.; Yassine, H.M.; Benslimane, F.M.; Al Khatib, H.A.; AlMukdad, S.; Coyle, P.; Ayoub, H.H.; Al Kanaani, Z.; et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat. Med. 2021; Epub ahead of print. [Google Scholar] [CrossRef]
- Andrews, N.; Tessier, E.; Stowe, J.; Gower, C.; Kirsebom, F.; Simmons, R.; Gallagher, E.; Chand, M.; Brown, K.; Ladhani, S.N.; et al. Vaccine effectiveness and duration of protection of Comirnaty, Vaxzevria and Spikevax against mild and severe COVID-19 in the UK. medRxiv 2021. [Google Scholar] [CrossRef]
- Nasreen, S.; Chung, H.; He, S.; Brown, K.A.; Gubbay, J.B.; Buchan, S.A.; Fell, D.B.; Austin, P.C.; Schwartz, K.L.; Sundaram, M.E.; et al. Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. Nat. Microbiol. 2022, 7, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Puranik, A.; Lenehan, P.J.; Silvert, E.; Niesen, M.J.M.; Corchado-Garcia, J.; O’Horo, J.C.; Virk, A.; Swift, M.D.; Halamka, J.; Badley, A.D.; et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. medRxiv 2021. [Google Scholar] [CrossRef]
- Nanduri, S.; Pilishvili, T.; Derado, G.; Soe, M.M.; Dollard, P.; Wu, H.; Li, Q.; Bagchi, S.; Dubendris, H.; Link-Gelles, R.; et al. Effectiveness of Pfizer-BioNTech and Moderna Vaccines in Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and During Widespread Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant— National Healthcare Safety Network, March 1–August 1, 2021. Morb. Mortal. Wkly Rep. 2021, 70, 1163–1166. [Google Scholar]
- Fowlkes, A.; Gaglani, M.; Groover, K.; Thiese, M.S.; Tyner, H.; Ellingson, K. Effectiveness of COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Frontline Workers Before and During B.1.617.2 (Delta) Variant Predominance—Eight U.S. Locations, December 2020–August 2021. Morb. Mortal. Wkly Rep. 2021, 70, 1167–1169. [Google Scholar] [CrossRef]
- Israel Ministry of Health. COVID-19 Vaccine Effectiveness against the Delta Variant. Israel’s Ministry of Health Report. 2021. Available online: Https://www.gov.il/BlobFolder/reports/vaccine-efficacy-safety-follow-up-committee/he/files_publications_corona_two-dose-vaccination-data.pdf (accessed on 11 November 2022).
- Ali, A.; Khan, S.U.; Ali, I.; Khan, F.U. On dynamics of stochastic avian influenza model with asymptomatic carrier using spectral method. Math. Methods Appl. Sci. 2022, 45, 8230–8246. [Google Scholar] [CrossRef]
- Bonyah, E.; Khan, M.A.; Okosun, K.O.; Gómez-Aguilar, J.F. On the co-infection of dengue fever and Zika virus. Optim. Contr. Appl. Meth. 2019, 40, 394–421. [Google Scholar] [CrossRef]
- Rihan, F.A.; Alsakaji, H.J. Dynamics of a stochastic delay differential model for COVID-19 infection with asymptomatic infected and interacting people: Case study in the UAE. Results Phys. 2021, 28, 104658. [Google Scholar] [CrossRef]
- Rihan, F.A.; Alsakaji, H.J.; Rajivganthi, C. Stochastic SIRC epidemic model with time-delay for COVID-19. Adv. Differ. Equ. 2020, 2020, 502. [Google Scholar] [CrossRef]
- Omame, A.; Abbas, M. Modeling SARS-CoV-2 and HBV co-dynamics with optimal control. Physica A 2023, 615, 128607. [Google Scholar] [CrossRef] [PubMed]
- Omame, A.; Abbas, M. The stability analysis of a co-circulation model for COVID-19, dengue, and zika with nonlinear incidence rates and vaccination strategies. Healthc. Anal. 2023, 3, 100151. [Google Scholar] [CrossRef] [PubMed]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science: Amsterdam, The Netherlands, 2006; p. 204. [Google Scholar]
- Lin, W. Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 2007, 332, 709–726. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and applications to heat transfer model. Therm Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Omame, A.; Abbas, M.; Onyenegecha, C.P. A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana-Baleanu derivative. Chaos Solitons Fractals 2021, 153, 111486. [Google Scholar] [CrossRef]
- Omame, A.; Abbas, M.; Nwajeri, U.K. A fractional-order control model for Diabetes COVID-19 co-dynamics with Mittag-Leffler function. Alex. Eng. J. 2022, 61, 7619–7635. [Google Scholar] [CrossRef]
- Ogunrinde, R.B.; Nwajeri, U.K.; Fadugba, S.E.; Ogunrinde, R.R.; Oshinubi, K.I. Dynamic model of COVID-19 and citizens reaction using fractional derivative. Alex. Eng. J. 2021, 60, 2001–2012. [Google Scholar] [CrossRef]
- Asamoah, J.K.K. Fractal-fractional model and numerical scheme based on Newton polynomial for Q fever disease under Atangana-Baleanu derivative. Results Phys. 2022, 34, 105189. [Google Scholar] [CrossRef]
- Asamoah, J.K.K.; Okyere, E.; Yankson, E.; Opoku, A.A.; Adom-Konadu, A.; Acheampong, E.; Arthur, Y.D. Non-fractional and fractional mathematical analysis and simulations for Q fever. Chaos Solitons Fractals 2022, 156, 111821. [Google Scholar] [CrossRef]
- Safari, F.; Chen, W. Numerical approximations for space-time fractional Burgers equations via a new semi-analytical method. Comput. Math. Appl. 2021, 96, 55–66. [Google Scholar] [CrossRef]
- Jafari, H.; Khalique, C.M.; Nazari, M. Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion-wave equations. Appl. Math. Lett. 2011, 24, 1799–1805. [Google Scholar] [CrossRef]
- Omame, A.; Zaman, F.D. Solution of the modified time fractional coupled Burgers equation using Laplace Adomian decomposition method. Acta Mech. Autom. 2023, 17, 124–132. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Rothana, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-M.; Rui, J.; Wang, Q.-P.; Zhao, Z.-Y.; Cui, J.-A.; Yin, L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty 2020, 9, 24. [Google Scholar] [CrossRef]
- Pakistan: Coronavirus Pandemic Country Profile. Available online: https://ourworldindata.org/coronavirus/country/pakistan (accessed on 11 November 2022).
- Yong, Z.; Jinrong, W.; Lu, Z. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2016. [Google Scholar]
- van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Ulam, S.M. A Collection of Mathematical Problems; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
- Ulam, S.M. Problem in Modern Mathematics; Dover Publications: Mineola, NY, USA, 2004. [Google Scholar]
- Toufik, M.; Atangana, A. New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models. Eur. Phys. J. Plus 2017, 132, 444. [Google Scholar] [CrossRef]
- Li, C.; Zeng, F. The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 2013, 34, 149–179. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J.; Freed, A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms 2004, 36, 31–52. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Hajipour, M. On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel. Nonlinear Dyn. 2018, 94, 397–414. [Google Scholar] [CrossRef]
Parameter | Description | Value | Source |
---|---|---|---|
Vaccine efficacy against the Delta SARS-CoV-2 variant | 0.80 | [4] | |
Vaccine efficacy against the Omicron SARS-CoV-2 variant | 0.57 | Assumed | |
Loss of infection-acquired immunity for Delta | |||
and Omicron variants, respectively | 0.01 | Assumed | |
Modification parameters accounting for the reduced | |||
transmission rate of individuals in and classes | 0.6–1.0 | Assumed | |
Modification parameters accounting for increased | |||
transmission rate of symptomatic individuals | |||
in and , respectively | 1.2 | Inferred from [3] | |
Progression rates | [31] | ||
Recovery rates | [32] | ||
Contact rate for Delta variant transmission | 0.1940 | Fitted | |
Contact rate for Omicron variant transmission | 0.1043 | Fitted | |
Delta-variant-induced death rate | Fitted | ||
Omicron-variant-induced death rate | Fitted | ||
Recruitment rate for individuals | [33] | ||
Fraction of vaccinated individuals | 0.5 | Assumed | |
Vaccination rate | 0.05 | Assumed | |
Natural death rate | [33] | ||
Delta-variant-associated reproduction number | 1.9795 | Fitted | |
Omicron-variant-associated reproduction number | 1.0846 | Fitted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, M.; Abbas, M.; Omame, A. Analysis of the Solution of a Model of SARS-CoV-2 Variants and Its Approximation Using Two-Step Lagrange Polynomial and Euler Techniques. Axioms 2023, 12, 480. https://doi.org/10.3390/axioms12050480
Usman M, Abbas M, Omame A. Analysis of the Solution of a Model of SARS-CoV-2 Variants and Its Approximation Using Two-Step Lagrange Polynomial and Euler Techniques. Axioms. 2023; 12(5):480. https://doi.org/10.3390/axioms12050480
Chicago/Turabian StyleUsman, Muhammad, Mujahid Abbas, and Andrew Omame. 2023. "Analysis of the Solution of a Model of SARS-CoV-2 Variants and Its Approximation Using Two-Step Lagrange Polynomial and Euler Techniques" Axioms 12, no. 5: 480. https://doi.org/10.3390/axioms12050480