Analysis of Inertia Effect on Axisymmetric Squeeze Flow of Slightly Viscoelastic Fluid Film between Two Disks by Recursive Approach
<p>Geometry of the squeeze flow when both disks approach each other.</p> "> Figure 2
<p>Film thickness.</p> "> Figure 3
<p>Comparison between homotopy perturbation method (HPM) [<a href="#B40-axioms-12-00363" class="html-bibr">40</a>] and Langlois recursive solutions for viscous fluid <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mi>β</mi> <mo>=</mo> <mn>0</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> at different Reynolds number values.</p> "> Figure 4
<p>(<b>a</b>–<b>d</b>) Variation in radial velocity due to slightly viscoelastic parameter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>β</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <mi>δ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi mathvariant="bold">a</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">b</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">c</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">d</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>(<b>a</b>–<b>d</b>) Variation in radial velocity due to Reynolds number <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi mathvariant="bold">a</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">b</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">c</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">d</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>.</p> "> Figure 5 Cont.
<p>(<b>a</b>–<b>d</b>) Variation in radial velocity due to Reynolds number <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi mathvariant="bold">a</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">b</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">c</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">d</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>(<b>a</b>–<b>d</b>) Variation in radial velocity due to small Reynolds number <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> when and <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi mathvariant="bold">a</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">b</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">c</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">d</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>(<b>a</b>–<b>d</b>) Variation in radial velocity due to large Reynolds number <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> when and <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi mathvariant="bold">a</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">b</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">c</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>0.75</mn> <mo>,</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">d</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>r</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>(<b>a</b>–<b>d</b>) Variation in axial velocity due to (<b>a</b>) rise in <math display="inline"><semantics> <mi>β</mi> </semantics></math> with <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>; (<b>b</b>) rise with small <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) rise with large <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> </mrow> </semantics></math>; (<b>d</b>) variation in radial <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> points with <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>(<b>a</b>–<b>c</b>) Variation in pressure distribution due to slightly viscoelastic parameter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>β</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>10.0</mn> </mrow> </semantics></math> (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>30.0</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>(<b>a</b>,<b>b</b>) Variation in wall absolute shear stress due to Reynolds number <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> for (<b>a</b>) viscous fluid; (<b>b</b>) slightly viscoelastic fluid.</p> "> Figure 11
<p>Variation in wall absolute shear stress due to the slightly viscoelastic parameter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>β</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in the presence of <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>.</p> "> Figure 12
<p>(<b>a</b>–<b>c</b>) Variation in squeeze force at upper disk due to slightly viscoelastic parameter <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mi>β</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> when (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>5.0</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>20.0</mn> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>40.0</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Mathematical Formulation
3. Analytical Solution of Flow Variables
3.1. Solution of Stream Function and Velocity Profile
3.2. Pressure Distribution
3.3. Tangential and Normal Stresses
3.4. Normal Force on the Upper Disk
3.5. Fluid Film Thickness
4. Results and Discussion
5. Conclusions
- The result of the radial velocity in the absence of the slightly viscoelastic parameter by the Langlois recursive approach was compared with the squeeze flow of viscous fluid by the homotopy perturbation method [40]. An excellent consensus was observed between the results.
- The flow variables at have identical results with the creeping squeeze flow of viscous fluid [38].
- The radial velocity on the values of surges at the center line of the channel with the radial direction and decreases in the vicinity of the upper disk. The backward flow initiated from on the edges due to the inertia effect.
- The radial velocity accelerates with the maximum value near the edges, and it reduces around the center of the channel due to the rise in Reynolds number.
- The shear-thickening and -thinning behavior of the slightly viscoelastic fluid are observed in the center region of the channel and the vicinity of the upper disk, respectively.
- The magnitude of axial velocity increases with the rise of and it also increases towards the radial direction.
- A reduction in the magnitude of axial velocity for the slightly viscoelastic fluid is seen due to the rising value of the Reynolds number .
- An increasing trend is seen in the pressure distribution when the slightly viscoelastic parameter and Reynolds number increase.
- The tangential shear stress at the upper disk surges significantly by increment in and .
- The squeeze force is boosted with the increase in , and this signifies that the fluid has shear-thickening properties.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamrock, B.J.; Schmid, S.R.; Jacobson, B.O. Fundamentals of Fluid Film Lubrication; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Yousfi, M.; Bou-Saïd, B.; Tichy, J. An analytical study of the squeezing flow of synovial fluid. Mech. Ind. 2013, 14, 59–69. [Google Scholar] [CrossRef]
- Venerus, D.C. Squeeze flows in liquid films bound by porous disks. J. Fluid Mech. 2018, 855, 860–881. [Google Scholar] [CrossRef]
- Meeten, G. Constant-force squeeze flow of soft solids. Rheol. Acta 2002, 41, 557–566. [Google Scholar] [CrossRef]
- Engmann, J.; Servais, C.; Burbidge, A.S. Squeeze flow theory and applications to rheometry: A review. J. Non-Newton. Fluid Mech. 2005, 132, 1–27. [Google Scholar] [CrossRef]
- Coussot, P. Yield stress fluid flows: A review of experimental data. J. Non-Newton. Fluid Mech. 2014, 211, 31–49. [Google Scholar] [CrossRef]
- Liu, F.; Jin, Z.; Hirt, F.; Rieker, C.; Roberts, P.; Grigoris, P. Transient elastohydrodynamic lubrication analysis of metal-on-metal hip implant under simulated walking conditions. J. Biomech. 2006, 39, 905–914. [Google Scholar] [CrossRef]
- Stefan, J. Versuche über die Scheinbare Adhäsion. Ann. Phys. 1875, 230, 316–318. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, O. IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc. Lond. 1886, 177, 157–234. [Google Scholar]
- Scott, J. Theory and application of the parallel-plate plastimeter. Part 2. Rubber Chem. Technol. 1935, 8, 587–596. [Google Scholar] [CrossRef]
- Jackson, J. A study of squeezing flow. Appl. Sci. Res. Sect. A 1963, 11, 148–152. [Google Scholar] [CrossRef]
- Jones, A.; Wilson, S. On the failure of lubrication theory in squeezing flows. J. Lubr. Technol. 1975, 97, 101–104. [Google Scholar] [CrossRef]
- Hamza, E.; MacDonald, D. A fluid film squeezed between two parallel plane surfaces. J. Fluid Mech. 1981, 109, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-M.; Ullah, I.; Ameer Ahammad, N.; Ullah, I.; Muhammad, T.; Asiri, S.A. Approximation of unsteady squeezing flow through porous space with slip effect: DJM approach. Waves Random Complex Media 2022, 1–15. [Google Scholar] [CrossRef]
- Qayyum, M.; Khan, H.; Rahim, M.T.; Ullah, I. Modeling and analysis of unsteady axisymmetric squeezing fluid flow through porous medium channel with slip boundary. PLoS ONE 2015, 10, e0117368. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Rahim, M.; Khan, H. Application of Daftardar Jafari method to first grade MHD squeezing fluid flow in a porous medium with slip boundary condition. Abstr. Appl. Anal. 2014, 2014, 479136. [Google Scholar] [CrossRef]
- Siddiqui, A.M.; Haroon, T.; Bhatti, S.; Ansari, A.R. A comparison of the adomian and homotopy perturbation methods in solving the problem of squeezing flow between two circular plates. Math. Model. Anal. 2010, 15, 491–504. [Google Scholar] [CrossRef]
- Siddiqui, A.M.; Irum, S.; Ansari, A.R. Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method. Math. Model. Anal. 2008, 13, 565–576. [Google Scholar] [CrossRef]
- Phan-Thien, N.; Dudek, J.; Boger, D.; Tirtaatmadja, V. Squeeze film flow of ideal elastic liquids. J. Non-Newton. Fluid Mech. 1985, 18, 227–254. [Google Scholar] [CrossRef]
- Phan-Thien, N.; Tanner, R. Viscoelastic squeeze-film flows–Maxwell fluids. J. Fluid Mech. 1983, 129, 265–281. [Google Scholar] [CrossRef]
- Phan-Thien, N.; Sugeng, F.; Tanner, R. The squeeze-film flow of a viscoelastic fluid. J. Non-Newton. Fluid Mech. 1987, 24, 97–119. [Google Scholar] [CrossRef]
- Memon, M.; Shaikh, A.A.; Siddiqui, A.M.; Kumar, L. Analytical Solution of Slow Squeeze Flow of Slightly Viscoelastic Fluid Film between Two Circular Disks Using Recursive Approach. Math. Probl. Eng. 2022, 2022, 4043909. [Google Scholar] [CrossRef]
- Hayat, T.; Nazar, H.; Imtiaz, M.; Alsaedi, A.; Ayub, M. Axisymmetric squeezing flow of third grade fluid in presence of convective conditions. Chin. J. Phys. 2017, 55, 738–754. [Google Scholar] [CrossRef]
- Shafiq, A.; Jabeen, S.; Hayat, T.; Alsaedi, A. Cattaneo–Christov heat flux model for squeezed flow of third grade fluid. Surf. Rev. Lett. 2017, 24, 1750098. [Google Scholar] [CrossRef]
- Noor, N.A.M.; Admon, M.A.; Shafie, S. Unsteady MHD Squeezing Flow of Casson Fluid Over Horizontal Channel in Presence of Chemical Reaction. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 92, 49–60. [Google Scholar] [CrossRef]
- Noor, N.A.M.; Shafie, S.; Admon, M.A. Effects of viscous dissipation and chemical reaction on MHD squeezing flow of Casson nanofluid between parallel plates in a porous medium with slip boundary condition. Eur. Phys. J. Plus 2020, 135, 855. [Google Scholar] [CrossRef]
- Noor, N.A.M.; Shafie, S.; Admon, M.A. MHD squeezing flow of Casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 68, 94–111. [Google Scholar] [CrossRef]
- Shankar, U.; Naduvinamani, N.B. Magnetized impacts of Cattaneo-Christov double-diffusion models on the time-dependent squeezing flow of Casson fluid: A generalized perspective of Fourier and Fick's laws. Eur. Phys. J. Plus 2019, 134, 344. [Google Scholar] [CrossRef]
- Mat Noor, N.A.; Shafie, S.; Admon, M.A. Slip effects on MHD squeezing flow of Jeffrey nanofluid in horizontal channel with chemical reaction. Mathematics 2021, 9, 1215. [Google Scholar] [CrossRef]
- Mat Noor, N.A.; Shafie, S.; Admon, M.A. Heat and mass transfer on MHD squeezing flow of Jeffrey nanofluid in horizontal channel through permeable medium. PLoS ONE 2021, 16, e0250402. [Google Scholar] [CrossRef]
- Mat Noor, N.A.; Shafie, S.; Admon, M.A. Heat Transfer on Magnetohydrodynamics Squeezing Flow of Jeffrey Fluid Through Permeable Medium with Slip Boundary. J. Nanofluids 2022, 11, 31–38. [Google Scholar] [CrossRef]
- Noor, N.A.M.; Shafie, S.; Admon, M.A. Impacts of chemical reaction on squeeze flow of MHD Jeffrey fluid in horizontal porous channel with slip condition. Phys. Scr. 2021, 96, 035216. [Google Scholar] [CrossRef]
- Ullah, H.; Siddiqui, A.M.; Sun, H.; Haroon, T. Slip effects on creeping flow of slightly non-Newtonian fluid in a uniformly porous slit. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 412. [Google Scholar] [CrossRef]
- Ullah, H.; Sun, H.; Siddiqui, A.M.; Haroon, T. Creeping flow analysis of slightly non-Newtonian fluid in a uniformly porous slit. J. Appl. Anal. Comput. 2019, 9, 140–158. [Google Scholar] [CrossRef]
- Mehboob, H.; Maqbool, K.; Ullah, H.; Siddiqui, A.M. Computational analysis of an axisymmetric flow of Jeffrey fluid in a permeable micro channel. Appl. Math. Comput. 2022, 418, 126826. [Google Scholar] [CrossRef]
- Langlois, W. A Recursive Approach to the Theory of Slow, Steady-State Viscoelastic Flow. Trans. Soc. Rheol. 1963, 7, 75–99. [Google Scholar] [CrossRef]
- Kacou, A.; Rajagopal, K.; Szeri, A. A thermohydrodynamic analysis of journal bearings lubricated by a non-Newtonian fluid. J. Tribol. 1988, 110, 414–420. [Google Scholar] [CrossRef]
- Lee, S.; Denn, M.; Crochet, M.; Metzner, A. Compressive flow between parallel disks: I. Newtonian fluid with a transverse viscosity gradient. J. Non-Newton. Fluid Mech. 1982, 10, 3–30. [Google Scholar] [CrossRef]
- Siddiqui, A.; Kaloni, P. Certain inverse solutions of a non-Newtonian fluid. Int. J. Non-Linear Mech. 1986, 21, 459–473. [Google Scholar] [CrossRef]
- Ghori, Q.K.; Ahmed, M.; Siddiqui, A.M. Application of Homotopy Perturbation Method to Squeezing Flow of a Newtonian Fluid. Int. J. Nonlinear Sci. Numer. Simul. 2007, 8, 179–184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Memon, M.; Shaikh, A.A.; Shaikh, W.A.; Siddiqui, A.M.; Sahoo, S.K.; De La Sen, M. Analysis of Inertia Effect on Axisymmetric Squeeze Flow of Slightly Viscoelastic Fluid Film between Two Disks by Recursive Approach. Axioms 2023, 12, 363. https://doi.org/10.3390/axioms12040363
Memon M, Shaikh AA, Shaikh WA, Siddiqui AM, Sahoo SK, De La Sen M. Analysis of Inertia Effect on Axisymmetric Squeeze Flow of Slightly Viscoelastic Fluid Film between Two Disks by Recursive Approach. Axioms. 2023; 12(4):363. https://doi.org/10.3390/axioms12040363
Chicago/Turabian StyleMemon, Muhammad, Asif Ali Shaikh, Wajid A. Shaikh, Abdul Majeed Siddiqui, Soubhagya Kumar Sahoo, and Manuel De La Sen. 2023. "Analysis of Inertia Effect on Axisymmetric Squeeze Flow of Slightly Viscoelastic Fluid Film between Two Disks by Recursive Approach" Axioms 12, no. 4: 363. https://doi.org/10.3390/axioms12040363
APA StyleMemon, M., Shaikh, A. A., Shaikh, W. A., Siddiqui, A. M., Sahoo, S. K., & De La Sen, M. (2023). Analysis of Inertia Effect on Axisymmetric Squeeze Flow of Slightly Viscoelastic Fluid Film between Two Disks by Recursive Approach. Axioms, 12(4), 363. https://doi.org/10.3390/axioms12040363