One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets
<p>Example of how a convolutional filter operates in a fictitious 2D situation. In the input image, in orange, the filter is shown (in this case, a 2 × 2 filter); in the output image, in green, the resulting pixel obtained after applying the filter is shown. As shown, the data collected from a 2 × 2 pixels cell resulted in only one pixel in the output. This procedure was repeated through all the rows and columns by moving the filter, transforming a 3 × 3 image into a 2 × 2.</p> "> Figure 2
<p>Graphic model of our CNN. In yellow, the input data shape; in blue, convolutional layers; in salmon, dense layers; in green, the output of the neural network. The lines between the layers indicate the activation function, the Dropout, and the Flatten layer, when appropriate.</p> "> Figure 3
<p>Mandel and Agol shape of the transits of K2-110 b. Red dots are the phased-folded light curve, and the black line is the Mandel and Agol model. Computed with TLS.</p> "> Figure 4
<p>Simulated light curve of host star of the planetary system of <a href="#axioms-12-00348-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>Results of the analysis of the light curve shown in <a href="#axioms-12-00348-f004" class="html-fig">Figure 4</a>. <b>Left column</b>: In the top panel, magnification of the epoch. In the bottom panel, phase-folded light curve (black dots) and the computed Mandel and Agol shape with TLS (red line). <b>Right column</b>: In the top panel, SDE graphic, where the highest peak (in red) corresponds to the orbital period. In the bottom panel, the light curve (black dots) with the detected transits by TLS (blue dots) and the computed non-phase-folded transit model (red line).</p> "> Figure 6
<p>Simulated light curve without transits.</p> "> Figure 7
<p>SDE from the analysis with TLS. No clear peaks are shown, which means that it does not present transit-like signals.</p> "> Figure 8
<p>Training history of the CNN model. In the left panel, the loss function against the epochs for the training (blue) and validation (orange). In the right panel, the accuracy as a function of the epochs for the training (blue) and validation (orange).</p> "> Figure 9
<p>Confusion matrix obtained from predicting on the test dataset.</p> "> Figure 10
<p>True positive rate as a function of false positive rate (ROC curve) scaled considering the threshold used to decide if there are transits or not. The probabilities should be lower than 1.0. The pink dot (with a value of 2.0) does not represent predictions because it is an arbitrary value used as a starting point for the process. We also plot the value of the computed AUC.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Convolutional Neural Networks (CNNs)
2.2. Our 1D Convolutional Neural Network Model
2.3. Simulated K2 Light Curves: Training and Testing Datasets
3. Training, Results, and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wolszczan, A.; Frail, D.A. A planetary system around the millisecond pulsar PSR1257 + 12. Nature 1992, 355, 145–147. [Google Scholar] [CrossRef]
- Mandel, K.; Agol, E. Analytic Light Curves for Planetary Transit Searches. Astrophys. J. 2002, 580, L171. [Google Scholar] [CrossRef]
- Claret, A. A new non-linear limb-darkening law for LTE stellar atmosphere models. Calculations for −5.0 <= log[M/H] <= +1, 2000 K <= Teff <= 50000 K at several surface gravities. A&A 2000, 363, 1081–1190. [Google Scholar]
- Charbonneau, D.; Brown, T.M.; Latham, D.W.; Mayor, M. Detection of Planetary Transits Across a Sun-like Star. Astrophys. J. 2000, 529, L45–L48. [Google Scholar] [CrossRef] [PubMed]
- Henry, G.W.; Marcy, G.W.; Butler, R.P.; Vogt, S.S. A Transiting “51 Peg–like” Planet. Astrophys. J. 2000, 529, L41–L44. [Google Scholar] [CrossRef] [PubMed]
- Borucki, W.J.; Koch, D.; Basri, G.; Batalha, N.; Brown, T.; Caldwell, D.; Caldwell, J.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; et al. Kepler Planet-Detection Mission: Introduction and First Results. Science 2010, 327, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Akeson, R.L.; Chen, X.; Ciardi, D.; Crane, M.; Good, J.; Harbut, M.; Jackson, E.; Kane, S.R.; Laity, A.C.; Leifer, S.; et al. The NASA Exoplanet Archive: Data and Tools for Exoplanet Research. Publ. Astron. Soc. Pac. 2013, 125, 989. [Google Scholar] [CrossRef]
- Howell, S.B.; Sobeck, C.; Haas, M.; Still, M.; Barclay, T.; Mullally, F.; Troeltzsch, J.; Aigrain, S.; Bryson, S.T.; Caldwell, D.; et al. The K2 Mission: Characterization and Early Results. Publ. Astron. Soc. Pac. 2014, 126, 398. [Google Scholar] [CrossRef]
- Díez Alonso, E.; Suárez Gómez, S.L.; González Hernández, J.I.; Suárez Mascareño, A.; González Gutiérrez, C.; Velasco, S.; Toledo-Padrón, B.; de Cos Juez, F.J.; Rebolo, R. A system of three transiting super-Earths in a cool dwarf star. Mon. Not. R. Astron. Soc. 2018, 476, L50–L54. [Google Scholar] [CrossRef]
- Díez Alonso, E.; González Hernández, J.I.; Suárez Gómez, S.L.; Aguado, D.S.; González Gutiérrez, C.; Suárez Mascareño, A.; Cabrera-Lavers, A.; González-Nuevo, J.; Toledo-Padrón, B.; Gracia, J.; et al. Two planetary systems with transiting Earth-sized and super-Earth planets orbiting late-type dwarf stars. Mon. Not. R. Astron. Soc. 2018, 480, L1–L5. [Google Scholar] [CrossRef]
- Díez Alonso, E.; González Hernández, J.I.; Toledo-Padrón, B.; Suárez Gómez, S.L.; Suárez Mascareño, A.; Aguado, D.S.; González Gutiérrez, C.; Cabrera-Lavers, A.; Carballido-Landeira, J.; Bonavera, L.; et al. A transiting super-Earth close to the inner edge of the habitable zone of an M0 dwarf star. Mon. Not. R. Astron. Soc. 2019, 489, 5928–5937. [Google Scholar] [CrossRef]
- Pollacco, D.L.; Skillen, I.; Cameron, A.C.; Christian, D.J.; Hellier, C.; Irwin, J.; Lister, T.A.; Street, R.A.; West, R.G.; Anderson, D.; et al. The WASP Project and the SuperWASP Cameras. Publ. Astron. Soc. Pac. 2006, 118, 1407. [Google Scholar] [CrossRef]
- Auvergne, M.; Bodin, P.; Boisnard, L.; Buey, J.T.; Chaintreuil, S.; Epstein, G.; Jouret, M.; Lam-Trong, T.; Levacher, P.; Magnan, A.; et al. The CoRoT satellite in flight: Description and performance. A&A 2009, 506, 411–424. [Google Scholar] [CrossRef]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite. J. Astron. Telesc. Instrum. Syst. 2014, 1, 014003. [Google Scholar] [CrossRef]
- Benz, W.; Broeg, C.; Fortier, A.; Rando, N.; Beck, T.; Beck, M.; Queloz, D.; Ehrenreich, D.; Maxted, P.F.L.; Isaak, K.G.; et al. The CHEOPS mission. Exp. Astron. 2021, 51, 109–151. [Google Scholar] [CrossRef]
- Kovács, G.; Zucker, S.; Mazeh, T. A box-fitting algorithm in the search for periodic transits. A&A 2002, 391, 369–377. [Google Scholar] [CrossRef]
- Hippke, M.; Heller, R. Optimized transit detection algorithm to search for periodic transits of small planets. A&A 2019, 623, A39. [Google Scholar] [CrossRef]
- Díez Alonso, E.; Montes, D.; de Cos Juez, F.J.; Naves, R.; García de La Cuesta, F.; Herrero, E.; Béjar, V.J.S.; Caballero, J.A.; Quirrenbach, A.; Amado, P.J.; et al. Determination of rotation periods of M stars with photometric techniques. In Proceedings of the Highlights on Spanish Astrophysics IX, Bilbao, Spain, 18–22 July 2016; pp. 502–503. [Google Scholar]
- Coughlin, J.L.; Mullally, F.; Thompson, S.E.; Rowe, J.F.; Burke, C.J.; Latham, D.W.; Batalha, N.M.; Ofir, A.; Quarles, B.L.; Henze, C.E.; et al. Planetary candidates observed by Kepler. VII. The first fully uniform catalog based on the entire 48-month data set (Q1–Q17 DR24). Astrophys. J. Suppl. Ser. 2016, 224, 12. [Google Scholar] [CrossRef]
- McCauliff, S.D.; Jenkins, J.M.; Catanzarite, J.; Burke, C.J.; Coughlin, J.L.; Twicken, J.D.; Tenenbaum, P.; Seader, S.; Li, J.; Cote, M. Automatic classification of Kepler planetary transit candidates. Astrophys. J. 2015, 806, 6. [Google Scholar] [CrossRef]
- Mislis, D.; Bachelet, E.; Alsubai, K.A.; Bramich, D.M.; Parley, N. SIDRA: A blind algorithm for signal detection in photometric surveys. Mon. Not. R. Astron. Soc. 2016, 455, 626–633. [Google Scholar] [CrossRef]
- Thompson, S.E.; Mullally, F.; Coughlin, J.; Christiansen, J.L.; Henze, C.E.; Haas, M.R.; Burke, C.J. A machine learning technique to identify transit shaped signals. Astrophys. J. 2015, 812, 46. [Google Scholar] [CrossRef]
- Armstrong, D.J.; Pollacco, D.; Santerne, A. Transit shapes and self-organizing maps as a tool for ranking planetary candidates: Application to Kepler and K2. Mon. Not. R. Astron. Soc. 2017, 465, 2634–2642. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Pearson, K.A.; Palafox, L.; Griffith, C.A. Searching for exoplanets using artificial intelligence. Mon. Not. R. Astron. Soc. 2018, 474, 478–491. [Google Scholar] [CrossRef]
- Zucker, S.; Giryes, R. Shallow Transits—Deep Learning. I. Feasibility Study of Deep Learning to Detect Periodic Transits of Exoplanets. Astron. J. 2018, 155, 147. [Google Scholar] [CrossRef]
- 2018 NASA Frontier Development Lab Exoplanet Team; Ansdell, M.; Ioannou, Y.; Osborn, H.P.; Sasdelli, M.; Smith, J.C.; Caldwell, D.; Jenkins, J.M.; Räissi, C.; Angerhausen, D.; et al. Scientific Domain Knowledge Improves Exoplanet Transit Classification with Deep Learning. Astrophys. J. Lett. 2018, 869, L7. [Google Scholar] [CrossRef]
- Chaushev, A.; Raynard, L.; Goad, M.R.; Eigmüller, P.; Armstrong, D.J.; Briegal, J.T.; Burleigh, M.R.; Casewell, S.L.; Gill, S.; Jenkins, J.S.; et al. Classifying exoplanet candidates with convolutional neural networks: Application to the Next Generation Transit Survey. Mon. Not. R. Astron. Soc. 2019, 488, 5232–5250. [Google Scholar] [CrossRef]
- Shallue, C.J.; Vanderburg, A. Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90. Astron. J. 2018, 155, 94. [Google Scholar] [CrossRef]
- Visser, K.; Bosma, B.; Postma, E. A one-armed CNN for exoplanet detection from light curves. arXiv 2021, arXiv:2105.06292. [Google Scholar] [CrossRef]
- Demircan, O.; Kahraman, G. Stellar Mass / Luminosity and Mass / Radius Relations. Astrophys. Space Sci. 1991, 181, 313–322. [Google Scholar] [CrossRef]
- Deng, L.; Yu, D. Deep Learning: Methods and Applications. Found. Trends Signal Process. 2014, 7, 197–387. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Young, L.C. The Convolution Transform. I. I. Hirschman and D. V. Widder. Princeton University Press, Princeton, N.J., 1955. x + 268 pp. $5.50. Science 1956, 123, 512–513. [Google Scholar] [CrossRef]
- Damelin, S.B.; Miller, W., Jr. The Mathematics of Signal Processing; Cambridge Texts in Applied Mathematics; Cambridge University Press: Cambridge, MA, USA, 2011. [Google Scholar] [CrossRef]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 3 December 2022).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 3 December 2022).
- Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv 2015, arXiv:1511.07289. [Google Scholar]
- Agarap, A.F. Deep Learning using Rectified Linear Units (ReLU). arXiv 2018, arXiv:1803.08375. [Google Scholar] [CrossRef]
- Narayan, S. The generalized sigmoid activation function: Competitive supervised learning. Inf. Sci. 1997, 99, 69–82. [Google Scholar] [CrossRef]
- Bridle, J. Training Stochastic Model Recognition Algorithms as Networks can Lead to Maximum Mutual Information Estimation of Parameters. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 27–30 November 1989; Volume 2. [Google Scholar]
- Osborn, H.P.; Santerne, A.; Barros, S.C.C.; Santos, N.C.; Dumusque, X.; Malavolta, L.; Armstrong, D.J.; Hojjatpanah, S.; Demangeon, O.; Adibekyan, V.; et al. K2-110 b: A massive mini-Neptune exoplanet. A&A 2017, 604, A19. [Google Scholar] [CrossRef]
- Kreidberg, L. Batman: Basic Transit Model calculation in Python. Publ. Astron. Soc. Pac. 2015, 127, 1161. [Google Scholar] [CrossRef]
- Kurucz, R.L. Model atmospheres for G, F, A, B, and O stars. Astrophys. J. 1979, 40, 1–340. [Google Scholar] [CrossRef]
- Wade, R.A.; Rucinski, S.M. Linear and quadratic limb-darkening coefficients for a large grid of LTE model atmospheres. A&A 1985, 60, 471–484. [Google Scholar]
- Ninkovic, S.; Trajkovska, V. On the Mass Distribution of Stars in the Solar Neighbourhood. Serbian Astron. J. 2006, 172, 17–20. [Google Scholar] [CrossRef]
- Koch, D.G.; Borucki, W.J.; Basri, G.; Batalha, N.M.; Brown, T.M.; Caldwell, D.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; Dunham, E.W.; et al. Kepler mission design, realized photometric performance, and early science. Astrophys. J. Lett. 2010, 713, L79. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [Google Scholar] [CrossRef]
- Gneiting, T.; Raftery, A.E. Strictly Proper Scoring Rules, Prediction, and Estimation. J. Am. Stat. Assoc. 2007, 102, 359–378. [Google Scholar] [CrossRef]
- Bloomfield, D.S.; Higgins, P.A.; McAteer, R.T.J.; Gallagher, P.T. Toward Reliable Benchmarking of Solar Flare Forecasting Methods. Astrophys. J. Lett. 2012, 747, L41. [Google Scholar] [CrossRef]
P(Days) | (Days) | i[deg] | mag | ||||
---|---|---|---|---|---|---|---|
9.12 | 6.38 | 0.03 | 27.09 | 90.00 | 14.86 | 1.00 | 3.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias Álvarez, S.; Díez Alonso, E.; Sánchez Rodríguez, M.L.; Rodríguez Rodríguez, J.; Sánchez Lasheras, F.; de Cos Juez, F.J. One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets. Axioms 2023, 12, 348. https://doi.org/10.3390/axioms12040348
Iglesias Álvarez S, Díez Alonso E, Sánchez Rodríguez ML, Rodríguez Rodríguez J, Sánchez Lasheras F, de Cos Juez FJ. One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets. Axioms. 2023; 12(4):348. https://doi.org/10.3390/axioms12040348
Chicago/Turabian StyleIglesias Álvarez, Santiago, Enrique Díez Alonso, María Luisa Sánchez Rodríguez, Javier Rodríguez Rodríguez, Fernando Sánchez Lasheras, and Francisco Javier de Cos Juez. 2023. "One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets" Axioms 12, no. 4: 348. https://doi.org/10.3390/axioms12040348
APA StyleIglesias Álvarez, S., Díez Alonso, E., Sánchez Rodríguez, M. L., Rodríguez Rodríguez, J., Sánchez Lasheras, F., & de Cos Juez, F. J. (2023). One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets. Axioms, 12(4), 348. https://doi.org/10.3390/axioms12040348