Estimation of Truncation Error in Statistical Description of Communication Signals over mm-Wave Channels
<p>Required number of terms computed numerically and using the bound given by (<a href="#FD17-axioms-11-00569" class="html-disp-formula">17</a>).</p> "> Figure 2
<p>Simple upper bound for <math display="inline"><semantics> <mrow> <msub> <mrow/> <mn>2</mn> </msub> <msub> <mi>F</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mo>−</mo> <mi>m</mi> <mo>,</mo> <mo>−</mo> <mi>m</mi> <mo>;</mo> <mn>1</mn> <mo>;</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Two upper bounds for <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mrow/> <mn>1</mn> </msub> <msub> <mi>F</mi> <mn>1</mn> </msub> <mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>−</mo> <mi>m</mi> <mo>;</mo> <mn>2</mn> <mo>;</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Illustration of the required number of terms in the summation in the CDF to achieve a specified absolute truncation error.</p> "> Figure 5
<p>Effect of parameter <span class="html-italic">K</span> on accuracy of evaluating PDF: (<b>a</b>) upper bound for truncation error vs. number of terms in summation; (<b>b</b>) required number of terms vs. truncation error.</p> "> Figure 6
<p>Effect of parameter <math display="inline"><semantics> <mi mathvariant="sans-serif">Γ</mi> </semantics></math> on accuracy of evaluating PDF: (<b>a</b>) upper bound for truncation error vs. number of terms in summation; (<b>b</b>) required number of terms vs. truncation error.</p> "> Figure 7
<p>Effect of parameter K on accuracy of evaluating CDF: (<b>a</b>) upper bound for truncation error vs. number of terms in summation; (<b>b</b>) required number of terms vs. truncation error.</p> "> Figure 8
<p>Analytical and Monte Carlo simulation results.</p> ">
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature
1.3. Contribution
1.4. Structure
2. Physical Background
3. Convergence Analysis of Series in PDF and CDF
3.1. Convergence Analysis of Series in PDF
3.1.1. Truncation Error of Series in PDF
3.1.2. Required Number of Terms in Evaluating PDF
3.2. Convergence Analysis of Series in CDF
3.2.1. Truncation Error of Series in CDF
3.2.2. Required Number of Terms for Evaluating CDF
4. Numerical Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5G | Fifth generation |
AWGN | Additive white Gaussian noise |
CDF | Cumulative distribution function |
Probability density function | |
TWDP | Two-wave diffuse power |
References
- Simon, M.K.; Alouini, M.S. Digital Communication over Fading Channels, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Shankar, P.M. Fading and Shadowing in Wireless Systems, 2nd ed.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Mavridis, T.; Petrillo, L.; Sarrazin, J.; Benlarbi-Delai, A.; De Doncker, P. Near-body shadowing analysis at 60 GHz. IEEE Trans. Antennas Propag. 2015, 63, 4505–4511. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.; Kang, J. Comments on “Near-body shadowing analysis at 60 GHz”. IEEE Trans. Antennas Propag. 2017, 65, 3314. [Google Scholar] [CrossRef]
- Zöchmann, E.; Caban, S.; Mecklenbräuker, C.F.; Pratschner, S.; Lerch, M.; Schwarz, S.; Rupp, M. Better than Rician: Modelling millimetre wave channels as two-wave with diffuse power. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.D.V.; Urquiza-Aguiar, L.; Paredes Paredes, M.C. Fading channel models for mm-wave communications. Electronics 2021, 10, 798. [Google Scholar] [CrossRef]
- Durgin, G.D.; Rappaport, T.S.; De Wolf, D.A. New analytical models and probability density functions for fading in wireless communications. IEEE Trans. Commun. 2002, 50, 1005–1015. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Lee, H.; Kang, J. Comprehensive analysis of the impact of TWDP fading on the achievable error rate performance of BPSK signaling. IEICE Trans. Commun. 2018, 101, 500–507. [Google Scholar] [CrossRef]
- Rao, M.; Lopez-Martinez, F.J.; Alouini, M.S.; Goldsmith, A. MGF approach to the analysis of generalized two-ray fading models. IEEE Trans. Wirel. Commun. 2015, 14, 2548–2561. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Fernandez, J.; Moreno-Pozas, L.; Lopez-Martinez, F.J.; Martos-Naya, E. Joint parameter estimation for the two-wave with diffuse power fading model. Sensors 2016, 16, 1014. [Google Scholar] [CrossRef] [PubMed]
- Maric, A.; Kaljic, E.; Njemcevic, P. An alternative statistical characterization of TWDP fading model. Sensors 2021, 21, 7513. [Google Scholar] [CrossRef] [PubMed]
- Njemcevic, P.; Kaljic, E.; Maric, A. Moment-Based Parameter Estimation for the Γ-Parameterized TWDP Model. Sensors 2022, 22, 774. [Google Scholar] [CrossRef] [PubMed]
- Kostic, I. Envelope probability density function of the sum of signal, noise and interference. Electron. Lett. 1978, 14, 490–491. [Google Scholar] [CrossRef]
- Kostic, I. Cumulative distribution function of envelope of sum of signal, noise and interference. In Proceedings of the Telecommunication Forum (TELFOR), Belgrade, Yugoslavia, 26–28 November 1996; pp. 301–303. [Google Scholar]
- Milovanovic, G.V. Numerical Analysis, Part I; University of Nis: Nis, Yugoslavia, 1979. (In Serbian) [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Academic Press: New York, NY, USA, 2000. [Google Scholar]
- Choi, J.; Milovanović, G.V.; Rathie, A.K. Generalized summation formulas for the Kampé de Fériet function. Axioms 2021, 10, 318. [Google Scholar] [CrossRef]
- Luke, Y.L. Inequalities for generalized hypergeometric functions. J. Approx. Theory 1972, 5, 41–65. [Google Scholar] [CrossRef] [Green Version]
- Joshi, C.; Bissu, S. Some inequalities of Bessel and modified Bessel functions. J. Aust. Math. Soc. 1991, 50, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.; Jeffrey, D.J.; Knuth, D.E. On the LambertW function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Lóczi, L. Guaranteed-and high-precision evaluation of the Lambert W function. Appl. Math. Comput. 2022, 433, 127406. [Google Scholar] [CrossRef]
- Iacono, R.; Boyd, J.P. New approximations to the principal real-valued branch of the Lambert W-function. Adv. Comput. Math. 2017, 43, 1403–1436. [Google Scholar] [CrossRef]
- Howard, R.M. Analytical Approximations for the Principal Branch of the Lambert W Function. Eur. J. Math. Anal. 2022, 2, 14. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. The Mathematical Functions Site. 1998–2022. Available online: http://functions.wolfram.com (accessed on 15 August 2022).
- Milovanovic, G.; Mitrinovic, D.; Rassias, T. Topics in Polynomials: Extremal Problems, Inequalities, Zeros; World Scientific: Singapore, 1994. [Google Scholar] [CrossRef]
- Love, E. Inequalities for Laguerre functions. J. Inequalities Appl. 1997, 1997, 936095. [Google Scholar] [CrossRef]
- Szegö, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society, Colloquium Publications: Providence, RI, USA, 1975; Volume 23. [Google Scholar] [CrossRef]
- Erldelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1955; Volume 2. [Google Scholar]
- NIST Digital Library of Mathematical Functions; Release 1.1.6 of 2022-06-30; Olver, F.W.J.; Daalhuis, A.B.O.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. (Eds.) . Available online: http://dlmf.nist.gov/ (accessed on 30 June 2022.).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marjanović, Z.; Milić, D.N.; Đorđević, G.T. Estimation of Truncation Error in Statistical Description of Communication Signals over mm-Wave Channels. Axioms 2022, 11, 569. https://doi.org/10.3390/axioms11100569
Marjanović Z, Milić DN, Đorđević GT. Estimation of Truncation Error in Statistical Description of Communication Signals over mm-Wave Channels. Axioms. 2022; 11(10):569. https://doi.org/10.3390/axioms11100569
Chicago/Turabian StyleMarjanović, Zvezdan, Dejan N. Milić, and Goran T. Đorđević. 2022. "Estimation of Truncation Error in Statistical Description of Communication Signals over mm-Wave Channels" Axioms 11, no. 10: 569. https://doi.org/10.3390/axioms11100569