A Study on Cryptocurrency Log-Return Price Prediction Using Multivariate Time-Series Model
<p>Structure of RNN. RNN has a recurrent structure and consists of multiple recurrent nodes [<a href="#B25-axioms-11-00448" class="html-bibr">25</a>].</p> "> Figure 2
<p>Structure of LSTM. LSTM is similar to RNN, but long-term and short-term memory cells are added [<a href="#B31-axioms-11-00448" class="html-bibr">31</a>].</p> "> Figure 3
<p>Structure of the GRU. GRU is a simplified form of LSTM and has a structure that uses less computation [<a href="#B34-axioms-11-00448" class="html-bibr">34</a>].</p> "> Figure 4
<p>Graph of change in transaction amount of selected major cryptocurrencies (Bitcoin, Ethereum, Binance Coin). From 31 May 2018 to 31 May 2022, there are 1462 timepoints.</p> "> Figure 5
<p>Log transformation and min-max normalization application result graph for selected cryptocurrencies.</p> "> Figure 6
<p>Feature importance extraction results. (<b>a</b>) Extracting feature importance for Bitcoin; (<b>b</b>) extracting feature importance for Ethereum; (<b>c</b>) extracting feature importance for Binance Coin.</p> "> Figure 6 Cont.
<p>Feature importance extraction results. (<b>a</b>) Extracting feature importance for Bitcoin; (<b>b</b>) extracting feature importance for Ethereum; (<b>c</b>) extracting feature importance for Binance Coin.</p> "> Figure 7
<p>ACF for cryptocurrencies. All three figures appear similar. In this study, 2-time leg units are considered as the main factor.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Feature Selection
Gini Impurity
2.2. Traditional Time-Series Analysis Methods
2.2.1. ARCH
2.2.2. GARCH
2.2.3. ARIMA
2.3. Deep Neural Network
2.3.1. RNN
2.3.2. LSTM
2.3.3. GRU
3. Data Analysis
3.1. Data Description
3.1.1. Data Collection
3.1.2. Preprocessing
3.2. Feature Selection
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Cryptocurrency | Test Statistic | p Value |
---|---|---|
Bitcoin | 0.145652 | 0.1000 |
Ethereum | 0.37252 | 0.0890 |
Binance coin | 0.193457 | 0.0100 |
References
- Shintate, T.; Pichl, L. Trend Prediction Classification for High Frequency Bitcoin Time Series with Deep Learning. J. Risk Financ. Manag. 2019, 12, 17. [Google Scholar] [CrossRef]
- Borges, T.A.; Neves, R.F. Ensemble of machine learning algorithms for cryptocurrency investment with different data resampling methods. Appl. Soft Comput. 2020, 90, 106187. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 1–9. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 31 August 2022).
- Yaga, D.; Mell, P.; Roby, N.; Scarfone, K. Blockchain technology overview. arXiv 2019, arXiv:1906.11078. [Google Scholar] [CrossRef]
- Li, X.; Jiang, P.; Chen, T.; Luo, X.; Wen, Q. A survey on the security of blockchain systems. Future Gener. Comput. Syst. 2020, 107, 841–853. [Google Scholar] [CrossRef]
- Wüst, K.; Gervais, A. Do you need a blockchain? In Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), Zug, Switzerland, 20–22 June 2018; pp. 45–54. [Google Scholar] [CrossRef]
- Roy, S.; Nanjiba, S.; Chakrabarty, A. Bitcoin price forecasting using time series analysis. In Proceedings of the 2018 21st International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December 2018. [Google Scholar] [CrossRef]
- Wu, C.H.; Lu, C.C.; Ma, Y.F.; Lu, R.S. A new forecasting framework for bitcoin price with LSTM. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; pp. 168–175. [Google Scholar] [CrossRef]
- Hashish, I.A.; Forni, F.; Andreotti, G.; Facchinetti, T.; Darjani, S. A hybrid model for bitcoin prices prediction using hidden Markov models and optimized LSTM networks. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 721–728. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, Y.; Li, X.; Ma, F. Which predictor is more predictive for Bitcoin volatility? And why? Int. J. Financ. Econ. 2020, 27, 1947–1961. [Google Scholar] [CrossRef]
- Kim, S.-K. Shifted Brownian Fluctuation Game. Mathematics 2022, 10, 1735. [Google Scholar] [CrossRef]
- Moran, P.A. Hypothesis Testing in Time Series Analysis. J. R. Stat. Soc. Ser. A (Gen.) 1951, 114, 579. [Google Scholar] [CrossRef]
- Brown, R.G.; Meyer, R.F. The fundamental theorem of exponential smoothing. Oper. Res. 1961, 9, 673–685. [Google Scholar] [CrossRef]
- Pagnottoni, P. Neural network models for Bitcoin option pricing. Front. Artif. Intell. 2019, 2, 5. [Google Scholar] [CrossRef]
- Jay, P.; Kalariya, V.; Parmar, P.; Tanwar, S.; Kumar, N.; Alazab, M. Stochastic neural networks for cryptocurrency price prediction. IEEE Access 2020, 8, 82804–82818. [Google Scholar] [CrossRef]
- Kim, J.-M.; Cho, C.; Jun, C. Forecasting the Price of the Cryptocurrency Using Linear and Nonlinear Error Correction Model. J. Risk Financ. Manag. 2022, 15, 74. [Google Scholar] [CrossRef]
- Kim, J.-M.; Jung, H. Time series forecasting using functional partial least square regression with stochastic volatility, GARCH, and exponential smoothing. J. Forecast. 2018, 37, 269–280. [Google Scholar] [CrossRef]
- Ardia, D.; Bluteau, K.; Rüede, M. Regime changes in Bitcoin GARCH volatility dynamics. Financ. Res. Lett. 2019, 29, 266–271. [Google Scholar] [CrossRef]
- Abu Bakar, N.; Rosbi, S. Autoregressive integrated moving average (ARIMA) model for forecasting cryptocurrency exchange rate in high volatility environment: A new insight of bitcoin transaction. Int. J. Adv. Eng. Res. Sci. 2017, 4, 130–137. [Google Scholar] [CrossRef]
- Hamayel, M.J.; Owda, A.Y. A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms. AI 2021, 2, 477–496. [Google Scholar] [CrossRef]
- Pichl, L.; Kaizoji, T. Volatility analysis of bitcoin. Quant. Financ. Econ. 2017, 1, 474–485. [Google Scholar] [CrossRef]
- Jovic, A.; Brkic, K.; Bogunovic, N. A review of feature selection methods with applications. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, L.; Zhang, X. Gini-Impurity index analysis. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3154–3169. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- Bollerslev, T.; Engle, R.F.; Nelson, D.B. ARCH models. Handb. Econom. 1994, 4, 2959–3038. [Google Scholar] [CrossRef]
- Engle, R. GARCH 101: The use of ARCH/GARCH models in applied econometrics. J. Econ. Perspect. 2001, 15, 157–168. [Google Scholar] [CrossRef]
- Horv, L.; Kokoszka, P. GARCH processes: Structure and estimation. Bernoulli 2003, 9, 201–227. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. A comparison of ARIMA and LSTM in forecasting time series. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1394–1401. [Google Scholar] [CrossRef]
- Contreras, J.; Espinola, R.; Nogales, F.J.; Conejo, A.J. ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst. 2003, 18, 1014–1020. [Google Scholar] [CrossRef]
- Connor, J.; Martin, R.; Atlas, L. Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 1994, 5, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Selvin, S.; Vinayakumar, R.; Gopalakrishnan, E.A.; Menon, V.K.; Soman, K.P. Stock price prediction using LSTM, RNN and CNN-sliding window model. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 1643–1647. [Google Scholar] [CrossRef]
- Mikolov, T.; Karafiát, M.; Burget, L.; Cernocký, J.; Khudanpur, S. Recurrent Neural Network Based Language Model. In Interspeech; Brno University of Technology; Johns Hopkins University: Brno, Czechia; Baltimore, MD, USA, 2010; Volume 2, pp. 1045–1048. Available online: http://www.fit.vutbr.cz/research/groups/speech/servite/2010/rnnlm_mikolov.pdf (accessed on 31 August 2022).
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 324–328. [Google Scholar] [CrossRef]
- Yamak, P.T.; Yujian, L.; Gadosey, P.K. A comparison between arima, lstm, and gru for time series forecasting. In Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 20–22 December 2019. [Google Scholar] [CrossRef]
- Mallqui, D.C.; Fernandes, R.A. Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques. Appl. Soft Comput. 2019, 75, 596–606. [Google Scholar] [CrossRef]
- Liu, W.K.; So, M.K. A GARCH model with artificial neural networks. Information 2020, 11, 489. [Google Scholar] [CrossRef]
- Cocco, L.; Tonelli, R.; Marchesi, M. Predictions of bitcoin prices through machine learning based frameworks. PeerJ Comput. Sci. 2021, 7, e413. [Google Scholar] [CrossRef]
- Ali, M.; Shatabda, S. A data selection methodology to train linear regression model to predict bitcoin price. In Proceedings of the 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT), Dhaka, Bangladesh, 28–29 November 2020; pp. 330–335. [Google Scholar] [CrossRef]
BTC | ETH | BNB | XLM | ADA | XRP | IOT | QTU | EOS | LTC | NEO | |
---|---|---|---|---|---|---|---|---|---|---|---|
Count | 1462 | 1462 | 1462 | 1462 | 1462 | 1462 | 1462 | 1462 | 1462 | 1462 | 1462 |
Mean | 21,416.9 | 1148.6 | 147.1 | 0.2 | 0.5 | 0.5 | 0.6 | 5.2 | 4.0 | 98.1 | 22.7 |
Std. | 18,576.8 | 1327.1 | 194.6 | 0.1 | 0.7 | 0.3 | 0.5 | 4.3 | 1.9 | 61.3 | 18.3 |
Min | 3211.7 | 83.8 | 4.5 | 0.0 | 0.0 | 0.1 | 0.1 | 1.0 | 1.2 | 23.1 | 5.4 |
25% | 7197.5 | 187.1 | 15.4 | 0.1 | 0.1 | 0.3 | 0.3 | 2.1 | 2.6 | 51.7 | 10.2 |
50% | 10,253.8 | 347.6 | 25.3 | 0.1 | 0.1 | 0.4 | 0.4 | 3.2 | 3.5 | 75.8 | 16.8 |
75% | 38,670.0 | 2159.4 | 321.9 | 0.3 | 1.1 | 0.6 | 0.9 | 7.0 | 4.9 | 133.8 | 28.8 |
Max | 67,525.8 | 4808.0 | 676.2 | 0.7 | 3.0 | 1.8 | 2.5 | 27.4 | 14.7 | 387.8 | 122.8 |
Skewness. | 0.82 | 1.07 | 1.07 | 1.16 | 1.38 | 1.38 | 1.27 | 1.61 | 1.96 | 1.31 | 2.17 |
Kurtosis. | −0.87 | −0.31 | −0.41 | 1.13 | 0.88 | 1.42 | 0.88 | 2.53 | 5.69 | 1.69 | 6.15 |
Models | Mu | Omega | Alpha | Beta | |||||
---|---|---|---|---|---|---|---|---|---|
Coef. | p | Coef. | p | Coef. | p | Coef. | p | ||
XLM | ARCH (1) | 0.45 | 0.000 *** | 0.00 | 0.000 *** | 0.30 | 0.000 *** | - | - |
GARCH (1, 1) | 0.45 | 0.000 *** | 0.00 | 0.000 *** | 0.24 | 0.000 *** | 0.63 | 0.000 *** | |
ADA | ARCH (1) | 0.65 | 0.000 *** | 0.00 | 0.000 *** | 0.12 | 0.000 *** | - | - |
GARCH (1, 1) | 0.65 | 0.000 *** | 0.00 | 0.000 *** | 0.11 | 0.000 *** | 0.80 | 0.000 *** | |
XRP | ARCH (1) | 0.54 | 0.000 *** | 0.00 | 0.000 *** | 0.70 | 0.000 *** | - | - |
GARCH (1, 1) | 0.54 | 0.000 *** | 0.00 | 0.04 | 0.27 | 0.000 *** | 0.64 | 0.000 *** | |
BNB | ARCH (1) | 0.52 | 0.000 *** | 0.00 | 0.000 *** | 0.20 | 0.000 *** | - | - |
GARCH (1, 1) | 0.52 | 0.000 *** | 0.00 | 0.000 *** | 0.15 | 0.000 *** | 0.82 | 0.000 *** | |
IOT | ARCH (1) | 0.65 | 0.000 *** | 0.00 | 0.000 *** | 0.09 | 0.124 | - | - |
GARCH (1, 1) | 0.65 | 0.000 *** | 0.00 | 0.103 | 0.11 | 0.001 ** | 0.86 | 0.000 *** | |
QTU | ARCH (1) | 0.61 | 0.000 *** | 0.00 | 0.000 *** | 0.19 | 0.02 | - | - |
GARCH (1, 1) | 0.61 | 0.000 *** | 0.00 | 0.311 | 0.09 | 0.179 | 0.85 | 0.000 *** | |
EOS | ARCH (1) | 0.55 | 0.000 *** | 0.00 | 0.000 *** | 0.16 | 0.02 | - | - |
GARCH (1, 1) | 0.55 | 0.000 *** | 0.00 | 0.000 *** | 0.07 | 0.000 *** | 0.88 | 0.000 *** | |
LTC | ARCH (1) | 0.65 | 0.000*** | 0.00 | 0.000 *** | 0.10 | 0.07 | - | - |
GARCH (1, 1) | 0.65 | 0.000 *** | 0.00 | 0.000 *** | 0.07 | 0.001 ** | 0.87 | 0.000 *** | |
ETH | ARCH (1) | 0.72 | 0.000 *** | 0.00 | 0.000 *** | 0.04 | 0.000 *** | - | - |
GARCH (1, 1) | 0.72 | 0.000 *** | 0.00 | 0.000 *** | 0.08 | 0.04 | 0.86 | 0.000 *** | |
NEO | ARCH (1) | 0.66 | 0.000 *** | 0.00 | 0.000 *** | 0.13 | 0.000 *** | - | - |
GARCH (1, 1) | 0.66 | 0.000 *** | 0.554 | 00.21 | 0.11 | 0.03 | 0.80 | 0.000 *** | |
BTC | ARCH (1) | 0.74 | 0.000 *** | 0.00 | 0.000 *** | 0.03 | 0.198 | - | - |
GARCH (1, 1) | 0.74 | 0.000 *** | 0.00 | 0.000 *** | 0.07 | 0.07 | 0.85 | 0.000 *** |
Features | Description | Dependent Features |
---|---|---|
Daily closing prices of cryptocurrencies converted to log-returns | These are the features that convert the daily closing price of the cryptocurrency used in this analysis into log-return price. It consists of a total of 11 and is named ‘cryptocurrency Close’. Among them, 3 features are used as dependent features, and the rest are used as independent features. | BTC_Close ETH_Close BNB_Close |
Daily volatility of cryptocurrencies derived with ARCH (1) | Features converted from ARCH (1) volatility analysis for cryptocurrency used in this analysis. It consists of a total of 11 and is named ‘cryptocurrency ARCH’. All features are used as independent features. | - |
Daily volatility of cryptocurrencies derived with GARCH (1, 1) | Features converted from GARCH (1, 1) volatility analysis for cryptocurrency used in this analysis. It consists of a total of 11 and is named ‘cryptocurrency GARCH’. All features are used as independent features. | - |
Model | Composition of Layers |
---|---|
Architecture 1 | RNN (32)/LSTM (32)/GRU (32) + dense (64-32-16-8-1) |
Architecture 2 | RNN (32)/LSTM (32)/GRU (32) + dense (32-16-8-1) |
Architecture 3 | RNN (32)/LSTM (32)/GRU (32) + dense (16-8-4-1) |
Architecture 4 | RNN (32)/LSTM (32)/GRU (32) + dense (16-8-1) |
Architecture 5 | RNN (32)/LSTM (32)/GRU (32) + dense (64-1) |
Architecture 6 | RNN (32)/LSTM (32)/GRU (32) + dense (16-1) |
Activation | Linear |
Loss | Mean squared error |
Optimizer | Adam |
Methods | MAE | MSE | RMSE | |
---|---|---|---|---|
ARIMA (2, 1, 0) | 0.0422 | 0.0028 | 0.0532 | |
Architecture 1 | RNN | 0.0377 | 0.0024 | 0.0492 |
LSTM | 0.0383 | 0.0025 | 0.0502 | |
GRU | 0.0378 | 0.0025 | 0.0504 | |
Architecture 2 | RNN | 0.0376 | 0.0024 | 0.0491 |
LSTM | 0.0381 | 0.0024 | 0.0497 | |
GRU | 0.0391 | 0.0026 | 0.0509 | |
Architecture 3 | RNN | 0.0382 | 0.0025 | 0.0497 |
LSTM | 0.0383 | 0.0025 | 0.0501 | |
GRU | 0.0382 | 0.0025 | 0.0500 | |
Architecture 4 | RNN | 0.0376 | 0.0024 | 0.0491 |
LSTM | 0.0382 | 0.0025 | 0.0496 | |
GRU | 0.0377 | 0.0025 | 0.0497 | |
Architecture 5 | RNN | 0.0374 | 0.0024 | 0.0491 |
LSTM | 0.0381 | 0.0024 | 0.0494 | |
GRU | 0.0381 | 0.0025 | 0.0496 | |
Architecture 6 | RNN | 0.0377 | 0.0025 | 0.0495 |
LSTM | 0.0379 | 0.0025 | 0.0498 | |
GRU | 0.0384 | 0.0024 | 0.0492 |
Methods | MAE | MSE | RMSE | |
---|---|---|---|---|
ARIMA (2, 1, 0) | 0.0442 | 0.0033 | 0.0575 | |
Architecture 1 | RNN | 0.0400 | 0.0024 | 0.0486 |
LSTM | 0.0400 | 0.0024 | 0.0488 | |
GRU | 0.0399 | 0.0024 | 0.0488 | |
Architecture 2 | RNN | 0.0402 | 0.0024 | 0.0490 |
LSTM | 0.0420 | 0.0027 | 0.0521 | |
GRU | 0.0400 | 0.0033 | 0.0575 | |
Architecture 3 | RNN | 0.0401 | 0.0024 | 0.0489 |
LSTM | 0.0415 | 0.0026 | 0.0506 | |
GRU | 0.0418 | 0.0026 | 0.0506 | |
Architecture 4 | RNN | 0.0397 | 0.0024 | 0.0486 |
LSTM | 0.0417 | 0.0025 | 0.0497 | |
GRU | 0.0411 | 0.0025 | 0.0497 | |
Architecture 5 | RNN | 0.0396 | 0.0024 | 0.0487 |
LSTM | 0.0396 | 0.0024 | 0.0485 | |
GRU | 0.0407 | 0.0025 | 0.0495 | |
Architecture 6 | RNN | 0.0400 | 0.0024 | 0.0490 |
LSTM | 0.0413 | 0.0025 | 0.0500 | |
GRU | 0.0393 | 0.0026 | 0.0486 |
Methods | MAE | MSE | RMSE | |
---|---|---|---|---|
ARIMA (2, 1, 0) | 0.0293 | 0.0016 | 0.0395 | |
Architecture 1 | RNN | 0.0252 | 0.0013 | 0.0357 |
LSTM | 0.0262 | 0.0014 | 0.0369 | |
GRU | 0.0264 | 0.0013 | 0.0365 | |
Architecture 2 | RNN | 0.0252 | 0.0013 | 0.0353 |
LSTM | 0.0259 | 0.0012 | 0.0352 | |
GRU | 0.0254 | 0.0012 | 0.0352 | |
Architecture 3 | RNN | 0.0251 | 0.0012 | 0.0353 |
LSTM | 0.0261 | 0.0013 | 0.0363 | |
GRU | 0.0252 | 0.0013 | 0.0354 | |
Architecture 4 | RNN | 0.0254 | 0.0013 | 0.0354 |
LSTM | 0.0266 | 0.0013 | 0.0361 | |
GRU | 0.0257 | 0.0013 | 0.0363 | |
Architecture 5 | RNN | 0.0251 | 0.0013 | 0.0355 |
LSTM | 0.0261 | 0.0013 | 0.0361 | |
GRU | 0.0257 | 0.0013 | 0.0357 | |
Architecture 6 | RNN | 0.0251 | 0.0013 | 0.0355 |
LSTM | 0.0261 | 0.0013 | 0.0362 | |
GRU | 0.0257 | 0.0013 | 0.0357 |
Cryptocurrency/Methods | MAE | MSE | RMSE | |
---|---|---|---|---|
Bitcoin | ARIMA | 0.0422 | 0.0028 | 0.0532 |
RNN | 0.0378 | 0.0026 | 0.0506 | |
LSTM | 0.0385 | 0.0026 | 0.0512 | |
GRU | 0.0379 | 0.0026 | 0.0507 | |
Ethereum | ARIMA | 0.0464 | 0.0034 | 0.0586 |
RNN | 0.0423 | 0.0027 | 0.0524 | |
LSTM | 0.0421 | 0.0028 | 0.0527 | |
GRU | 0.0417 | 0.0026 | 0.0510 | |
Binance coin | ARIMA | 0.0340 | 0.0020 | 0.0450 |
RNN | 0.0289 | 0.0016 | 0.0401 | |
LSTM | 0.0290 | 0.0016 | 0.0406 | |
GRU | 0.0297 | 0.0016 | 0.0406 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, S.-H.; Kim, J.-M.; Park, B.-K.; Kim, S. A Study on Cryptocurrency Log-Return Price Prediction Using Multivariate Time-Series Model. Axioms 2022, 11, 448. https://doi.org/10.3390/axioms11090448
Sung S-H, Kim J-M, Park B-K, Kim S. A Study on Cryptocurrency Log-Return Price Prediction Using Multivariate Time-Series Model. Axioms. 2022; 11(9):448. https://doi.org/10.3390/axioms11090448
Chicago/Turabian StyleSung, Sang-Ha, Jong-Min Kim, Byung-Kwon Park, and Sangjin Kim. 2022. "A Study on Cryptocurrency Log-Return Price Prediction Using Multivariate Time-Series Model" Axioms 11, no. 9: 448. https://doi.org/10.3390/axioms11090448
APA StyleSung, S.-H., Kim, J.-M., Park, B.-K., & Kim, S. (2022). A Study on Cryptocurrency Log-Return Price Prediction Using Multivariate Time-Series Model. Axioms, 11(9), 448. https://doi.org/10.3390/axioms11090448