Variational-Like Inequality Problem Involving Generalized Cayley Operator
Abstract
:1. Introduction
2. Preliminaries
- (i)
- is said to be Lipschitz continuous in the first argument, if there exists a constant such that
- (ii)
- is said to be Lipschitz continuous in the second argument, if there exists a constant such that
- (iii)
- is said to be Lipschitz continuous, if there exists a constant such that
- (iv)
- g is said to be strongly monotone, if there exists a constant such that
- (i)
- δ-strongly monotone, if there exists a constant such that
- (ii)
- τ-Lipschitz continuous, if there exists a constant such that
- (i)
- for each is lower semicontinuous on each compact subset of X,
- (ii)
- for each finite set and for each with and ,
- (iii)
- there exists a nonempty compact convex subset of X and a nonempty compact subset K of X such that for each , there is an satisfying .Then there exists such that , for all .
3. Formulation of Problem and Fixed Point Formulation
4. Iterative Algorithm and Convergence Result
Algorithm 1
5. Stability Analysis
6. Numerical Example
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stampacchia, G. Formes bilineaires coercivites sur les ensembles convexes. C. R. Acad. Paris 1964, 258, 4413–4416. [Google Scholar]
- Fichera, G. Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambique condizione al contorno. Atti. Acad. Naz. Lincei. Mem. Cl. Sci. Nat. Sez. Ia 1963–1964, 7, 91–140. [Google Scholar]
- Adly, S.; Oettli, W. Solvability of Generalized Nonlinear Symmetric Variational Inequalities; University of Mannheim: Mannheim, Germany, 1997. [Google Scholar]
- Attouch, H.; Thera, M. A general duality principle for the sum of two operators. J. Convex Anal. 1996, 3, 1–24. [Google Scholar]
- Baiocchi, C.; Capelo, A. Variational and Quasivariational Inequalities, Applications to Free Boundary Problems; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Brezis, H. Operateur Maximaux Monotone et Semigroupes de Contractions dans les Dspaces de Hilbert; North-Holland: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Cottle, R.W.; Giannessi, F.; Lions, J.L. Variational Inequalities: Theory and Applications; J. Wiley and Sons: New York, NY, USA, 1980. [Google Scholar]
- Chang, S.S.; Wen, C.F.; Yao, J.C. Zero point problem of accretive operators in Banach spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 105–118. [Google Scholar] [CrossRef]
- Fulga, C.; Preda, V. Nonlinear programming with ψ-preinvex and local ψ-preinvex functions. Eul. J. Oper. Res 2009, 192, 737–743. [Google Scholar] [CrossRef]
- Fang, Y.P.; Huang, N.J.; Thompson, H.B. A new system of variational inclusions with (H,η)-monotone operators in Hilbert spaces. Comput. Math. Appl. 2005, 49, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Giannessi, F.; Maugeri, A. Variational Inequalities and Network Equilibrium Problems; Plenum Press: New York, NY, USA, 1995. [Google Scholar]
- Glowinski, R.; Lions, J.; Tremolieres, R. Numerical Analysis of Variational Inequalities; North-Holland: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Nguyen, L.V.; Ansari, Q.H.; Qin, X. Weak sharpness and finite convergence for solutions of nonsmooth variational inequalities in Hilbert spaces. Appl. Math. Optim. 2020. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Z. A generalized mixed variational inclusion involving (H(.,.),η)-monotone operators in Banach spaces. J. Math. Res. 2010, 2, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Lions, J.L.; Stampacchia, G. Variational inequalities. Commun. Pure Appl. Math. 1967, 20, 493–512. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Ibrahim, Y.; Khan, A.R.; Sen, M.D.L. Strong convergence of a system of generalized mixed equilibrium problem, splits variational inclusion problem and fixed point problem in Banach spaces. Symmetry 2019, 11, 722. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.Y. A monotone Bregman projection algorithm for fixed point and equilibrium problems in a reflexive Banach space. Filomat 2020, 34, 1487–1497. [Google Scholar] [CrossRef]
- Cho, S.Y. Implicit extragradient-like method for fixed point problems and variational inclusion problems in a Banach space. Symmetry 2020, 12, 998. [Google Scholar] [CrossRef]
- Ceng, L.C. Hybrid viscosity extragradient method for systems of variational inequalities, fixed points of nonexpansive mappings, zero points of accretive operators in Banach spaces. Fixed Point Theory 2018, 19, 487–502. [Google Scholar] [CrossRef]
- Guo, J.S.; Yao, J.C. Extension of strongly nonlinear quasivariational inequalities. Appl. Math. Lett. 1992, 5, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Harker, P.T.; Pang, J.S. Finite-dimensional variational inequality and nonlinear complementarity problems. Math. Program 1990, 48, 161–220. [Google Scholar] [CrossRef]
- Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Hammad, H.A.; Rehman, H.; Sen, M.D.L. Advanced algorithms and common solutions to variational inequalities. Symmetry 2020, 12, 1198. [Google Scholar] [CrossRef]
- Kinderlehrer, D.; Stampacchia, G. An Introduction to Variational Inequalities and their Applications; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Kumam, W.; Muangchoo, K. Inertial iterative self-adaptive step size extragradient-like methods for solving equilibrium problems in real Hilbert space with applications. Axioms 2020, 9, 127. [Google Scholar] [CrossRef]
- Moudafi, A.; Lehdili, N. From progressive decoupling of linkages in variational inequalities to fixed-point problems. Appl. Set Valued Anal. Optim. 2020, 2, 159–173. [Google Scholar]
- Parida, J.; Sahoo, M.; Kumar, A. A Variational-like Inequality Problem. Bull. Austral. Math. Soc. 1989, 39, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Rathee, S.; Swami, M. Strong convergence of a hybrid method for infinite family of nonexpansive mapping and variational inequality. J. Indones. Math. Soc. 2021, 27, 90–102. [Google Scholar] [CrossRef]
- Yao, J.C. Existence of generalized variational inequalities. Oper. Res. Lett. 1994, 15, 35–40. [Google Scholar] [CrossRef]
- Ding, X.P. Generalized quasi-variational-like inclusions with nonconvex functionals. Appl. Math. Comput. 2001, 122, 267–282. [Google Scholar] [CrossRef]
- Ding, X.P.; Tan, K.K. A minimax inequality with applications to existence of equilibrium point and fixed point theorem. Coll. Math. 1992, 63, 233–247. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.J.; Chen, G. Diagonal convexity conditions for problems in convex analysis and quasivariational inequalities. J. Math. Anal. Appl. 1988, 132, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A. Nonconvex functions and variational inequalities. J. Optim. Theory Appl. 1995, 87, 615–630. [Google Scholar] [CrossRef]
- Berinde, V. Iterative Approximation of Fixed Points: Lecture Notes in Mathematics 1912; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ding, X.P. Perturbed proximal point algorithms for generalized quasi variational inclusions. J. Math. Anal. Appl. 1997, 210, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Ahmad, R.; Wen, C.F. Cayley Inclusion Problem Involving XOR-operation. Mathematics 2019, 7, 302. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.P.; Luo, C.L. Perturbed proximal point algorithms for general quasi-variational-like inclusions. J. Comput. Appl. Math. 2000, 113, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Hassouni, A.; Moudafi, A. A perturbed algorithm for variational inclusions. J. Math. Anal. Appl. 1994, 185, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.J. Generalized nonlinear variational inclusions with noncompact valued mappings. Appl. Math. Lett. 1996, 9, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, A.H.; Ansari, Q.H. Strongly nonlinear quasivariational inequalities. J. Math. Anal. Appl. 1990, 149, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, A.H.; Ansari, Q.H. General strongly nonlinear variational inequalities. J. Math. Anal. Appl. 1992, 166, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Nadler, S.B. Multivalued contraction mapping. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rather, Z.A.; Ahmad, R.; Wen, C.-F. Variational-Like Inequality Problem Involving Generalized Cayley Operator. Axioms 2021, 10, 133. https://doi.org/10.3390/axioms10030133
Rather ZA, Ahmad R, Wen C-F. Variational-Like Inequality Problem Involving Generalized Cayley Operator. Axioms. 2021; 10(3):133. https://doi.org/10.3390/axioms10030133
Chicago/Turabian StyleRather, Zahoor Ahmad, Rais Ahmad, and Ching-Feng Wen. 2021. "Variational-Like Inequality Problem Involving Generalized Cayley Operator" Axioms 10, no. 3: 133. https://doi.org/10.3390/axioms10030133
APA StyleRather, Z. A., Ahmad, R., & Wen, C. -F. (2021). Variational-Like Inequality Problem Involving Generalized Cayley Operator. Axioms, 10(3), 133. https://doi.org/10.3390/axioms10030133