Mobile Laboratory Investigations of Industrial Point Source Emissions during the MOOSE Field Campaign
<p>Aerodyne Mobile Laboratory Instrument Manifest for MOOSE-2021.</p> "> Figure 2
<p>Time traces (<b>A</b>) and correlation plot (<b>B</b>) of toluene versus the sum of C6–C9 aromatics. The molar ratio is taken from the slope of the correlation plot, m = 0.440.</p> "> Figure 3
<p>Overview map of study area showing Michigan and Ontario boundaries. Select cities (blue) and Michigan counties (grey) are labeled. Visited/measured sources are shown as pink dots, with those sources characterized here shown in darker pink and labeled with their site ID. Shorelines: NOAA [<a href="#B22-atmosphere-14-01632" class="html-bibr">22</a>], county lines: State of Michigan [<a href="#B23-atmosphere-14-01632" class="html-bibr">23</a>].</p> "> Figure 4
<p>Example chemical fingerprint for Facility MA130. Ratios of VOCs to the sum of aromatics and R<sup>2</sup> of the linear fit are listed beside their trace name (<b>top</b>). Additional ratios for other gas phase tracers are noted versus their denominator. Time traces for selected traces are shown (<b>middle</b>). A map (<b>bottom</b>) shows concentration over the driven path.</p> "> Figure 5
<p>Representative transects downwind of the chemical waste facility WA236 and the automaker assembly plant WA137. The map (<b>left</b>) shows the AML path colored by acetone concentration. The time traces (<b>right</b>) show a subset of measured species, with traces colored to match the axis labels. For legend of aromatic traces, see <a href="#atmosphere-14-01632-f004" class="html-fig">Figure 4</a>. A primary VOC plume (@ symbol) is shown, along with a lower intensity and broader plume (* symbol). These plumes correspond to the circled and labeled areas on the map.</p> "> Figure 6
<p>Sum of C6–C9 aromatics during Dearborn Loops under SW winds. (<b>A</b>) shows average concentrations. EGLE monitoring stations (purple triangles), inventory sources (white squares) and the outlines of 3 major facilities (WA87—automaker; WA0—steel; WA22—refinery) are also drawn. (<b>B</b>) shows a histogram of the measured concentrations in each map pixel, on a log scale. (<b>C</b>) shows the number of measurements in each map pixel, as well as roads driven over the course of the campaign.</p> "> Figure 7
<p>AML and MECP TAGA coordinated transects in Port Huron/Sarnia, from South to North, showing three distinct HCHO plumes, and two broad C8 aromatic plumes. Concentration as a function of kilometers north (<b>top</b>) and maps (<b>bottom</b>) are shown. The drive paths are colored by concentration, with the HCHO trace offset for clarity. The C8-aromatic axes are clipped at 3 ppb to emphasize the broad enhancements over other short-duration events. The petrochemical and refinery sources on the Canadian side of the river are labeled as Clusters 1 through 3. Wind barbs (white) point into the wind. Satellite image source: Google Maps. Imagery ©2023 TerraMetrics.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Plan
2.2. Instrumentation
2.3. Calculation of Chemical Fingerprints
3. Results
3.1. Point Source Chemical Fingerprints
3.1.1. MA130: Industrial Coatings
3.1.2. MA237: Industrial Cleaning
3.1.3. SA96: Adhesives Manufacturer
3.1.4. WA236: Chemical Waste
3.1.5. MA141: Natural Gas Compressor Station
3.1.6. WA238 and WA240: Natural Gas Distribution Network Leaks
3.1.7. WA0 and WA87: Steel Manufacturer and Automaker
3.1.8. WA22: Refinery
3.2. VOC Concentrations in an Industrial Area
3.3. Cross-Border Emissions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolb, C.E.; Herndon, S.C.; McManus, J.B.; Shorter, J.H.; Zahniser, M.S.; Nelson, D.D.; Jayne, J.T.; Canagaratna, M.R.; Worsnop, D.R. Mobile Laboratory with Rapid Response Instruments for Real-time Measurements of Urban and Regional Trace Gas and Particulate Distributions and Emission Source Characteristics. Environ. Sci. Technol. 2004, 38, 5694–5703. [Google Scholar] [CrossRef]
- Yacovitch, T.I.; Herndon, S.C.; Roscioli, J.R.; Floerchinger, C.; Knighton, W.B.; Kolb, C.E. Air Pollutant Mapping with a Mobile Laboratory During the BEE-TEX Field Study. Environ. Health Insights 2015, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Galarneau, E.; Yacovitch, T.I.; Lerner, B.; Sheppard, A.; Quach, B.-T.; Kuang, W.; Rai, H.; Staebler, R.; Mihele, C.; Vogel, F. From hotspots to background: High-resolution mapping of ethylene oxide in urban air. Atmos. Environ. 2023, 307, 119828. [Google Scholar] [CrossRef]
- Yacovitch, T.I.; Daube, C.; Vaughn, T.L.; Bell, C.S.; Roscioli, J.R.; Knighton, W.B.; Nelson, D.D.; Zimmerle, D.; Pétron, G.; Herndon, S.C. Natural gas facility methane emissions: Measurements by tracer flux ratio in two US natural gas producing basins. Elem. Sci. Anth. 2017, 5, 69. [Google Scholar] [CrossRef]
- Brantley, H.L.; Thoma, E.D.; Eisele, A.P. Assessment of volatile organic compound and hazardous air pollutant emissions from oil and natural gas well pads using mobile remote and on-site direct measurements. J. Air Waste Manag. Assoc. 2015, 65, 1072–1082. [Google Scholar] [CrossRef] [PubMed]
- Roscioli, J.R.; Yacovitch, T.I.; Floerchinger, C.; Mitchell, A.L.; Tkacik, D.S.; Subramanian, R.; Martinez, D.M.; Vaughn, T.L.; Williams, L.; Zimmerle, D.; et al. Measurements of methane emissions from natural gas gathering facilities and processing plants: Measurement methods. Atmos. Meas. Tech. 2015, 8, 2017–2035. [Google Scholar] [CrossRef]
- Herndon, S.C.; Jayne, J.T.; Zahniser, M.S.; Worsnop, D.R.; Knighton, B.; Alwine, E.; Lamb, B.K.; Zavala, M.; Nelson, D.D.; McManus, J.B.; et al. Characterization of urban pollutant emission fluxes and ambient concentration distributions using a mobile laboratory with rapid response instrumentation. Faraday Discuss. 2005, 130, 327–339. [Google Scholar] [CrossRef]
- McManus, J.B.; Zahniser, M.S.; Nelson, D.D.; Shorter, J.H.; Herndon, S.C.; Jervis, D.; Agnese, M.; McGovern, R.; Yacovitch, T.I.; Roscioli, J.R. Recent progress in laser-based trace gas instruments: Performance and noise analysis. Appl. Phys. B 2015, 119, 203–218. [Google Scholar] [CrossRef]
- Yacovitch, T.I.; Herndon, S.C.; Roscioli, J.R.; Floerchinger, C.; McGovern, R.M.; Agnese, M.; Pétron, G.; Kofler, J.; Sweeney, C.; Karion, A.; et al. Demonstration of an Ethane Spectrometer for Methane Source Identification. Environ. Sci. Technol. 2014, 48, 8028–8034. [Google Scholar] [CrossRef]
- Spinei, E.; Whitehill, A.; Fried, A.; Tiefengraber, M.; Knepp, T.N.; Herndon, S.; Herman, J.R.; Müller, M.; Abuhassan, N.; Cede, A.; et al. The first evaluation of formaldehyde column observations by improved Pandora spectrometers during the KORUS-AQ field study. Atmos. Meas. Tech. 2018, 11, 4943–4961. [Google Scholar] [CrossRef]
- Krechmer, J.; Lopez-Hilfiker, F.; Koss, A.; Hutterli, M.; Stoermer, C.; Deming, B.; Kimmel, J.; Warneke, C.; Holzinger, R.; Jayne, J.; et al. Evaluation of a New Reagent-Ion Source and Focusing Ion–Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry. Anal. Chem. 2018, 90, 12011–12018. [Google Scholar] [CrossRef]
- Riva, M.; Rantala, P.; Krechmer, J.E.; Peräkylä, O.; Zhang, Y.; Heikkinen, L.; Garmash, O.; Yan, C.; Kulmala, M.; Worsnop, D.; et al. Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species. Atmos. Meas. Tech. 2019, 12, 2403–2421. [Google Scholar] [CrossRef]
- Stark, H.; Yatavelli, R.L.N.; Thompson, S.L.; Kimmel, J.R.; Cubison, M.J.; Chhabra, P.S.; Canagaratna, M.R.; Jayne, J.T.; Worsnop, D.R.; Jimenez, J.L. Methods to extract molecular and bulk chemical information from series of complex mass spectra with limited mass resolution. Int. J. Mass Spectrom. 2015, 389, 26–38. [Google Scholar] [CrossRef]
- Sekimoto, K.; Li, S.-M.; Yuan, B.; Koss, A.; Coggon, M.; Warneke, C.; de Gouw, J. Calculation of the sensitivity of proton-transfer-reaction mass spectrometry (PTR-MS) for organic trace gases using molecular properties. Int. J. Mass Spectrom. 2017, 421, 71–94. [Google Scholar] [CrossRef]
- Holzinger, R.; Acton, W.J.F.; Bloss, W.J.; Breitenlechner, M.; Crilley, L.R.; Dusanter, S.; Gonin, M.; Gros, V.; Keutsch, F.N.; Kiendler-Scharr, A.; et al. Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS. Atmos. Meas. Tech. 2019, 12, 6193–6208. [Google Scholar] [CrossRef]
- Pagonis, D.; Sekimoto, K.; de Gouw, J. A Library of Proton-Transfer Reactions of H3O+ Ions Used for Trace Gas Detection. J. Am. Soc. Mass. Spectrom. 2019, 30, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Coggon, M.M.; Stockwell, C.E.; Claflin, M.S.; Pfannerstill, E.Y.; Lu, X.; Gilman, J.B.; Marcantonio, J.; Cao, C.; Bates, K.; Gkatzelis, G.I.; et al. Identifying and correcting interferences to PTR-ToF-MS measurements of isoprene and other urban volatile organic compounds. EGUsphere 2023, 2023, 1–41. [Google Scholar] [CrossRef]
- Claflin, M.S.; Pagonis, D.; Finewax, Z.; Handschy, A.V.; Day, D.A.; Brown, W.L.; Jayne, J.T.; Worsnop, D.R.; Jimenez, J.L.; Ziemann, P.J.; et al. An in situ gas chromatograph with automatic detector switching between PTR- and EI-TOF-MS: Isomer-resolved measurements of indoor air. Atmos. Meas. Tech. 2021, 14, 133–152. [Google Scholar] [CrossRef]
- Herndon, S.C.; Nelson, D.D.; Wood, E.C.; Knighton, W.B.; Kolb, C.E.; Kodesh, Z.; Torres, V.M.; Allen, D.T. Application of the Carbon Balance Method to Flare Emissions Characteristics. Ind. Eng. Chem. Res. 2012, 51, 12577–12585. [Google Scholar] [CrossRef]
- Subramanian, R.; Williams, L.L.; Vaughn, T.L.; Zimmerle, D.; Roscioli, J.R.; Herndon, S.C.; Yacovitch, T.I.; Floerchinger, C.; Tkacik, D.S.; Mitchell, A.L.; et al. Methane Emissions from Natural Gas Compressor Stations in the Transmission and Storage Sector: Measurements and Comparisons with the EPA Greenhouse Gas Reporting Program Protocol. Environ. Sci. Technol. 2015, 49, 3252–3261. [Google Scholar] [CrossRef]
- Wang, J.M.; Jeong, C.H.; Zimmerman, N.; Healy, R.M.; Wang, D.K.; Ke, F.; Evans, G.J. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters. Atmos. Meas. Tech. 2015, 8, 3263–3275. [Google Scholar] [CrossRef]
- NOAA. Global Self-Consistent, Hierarchical, High-resolution Geography Database (GSHHG); Version 2.2.0; NOAA: Washington, DC, USA, 2013. Available online: https://www.ngdc.noaa.gov/mgg/shorelines/ (accessed on 23 September 2023).
- State of Michigan. Michigan Counties; v17a; State of Michigan: Lansing, MI, USA, 2023; Available online: https://gis-michigan.opendata.arcgis.com/datasets/counties-v17a/explore (accessed on 23 September 2023).
- Olaguer, E.P. Inverse Modeling of Formaldehyde Emissions and Assessment of Associated Cumulative Ambient Air Exposures at Fine Scale. Atmosphere 2023, 14, 931. [Google Scholar] [CrossRef]
- Paatero, P. A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis. Chemom. Intell. Lab. Syst. 1997, 38, 223–242. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive Matrix Factorization—A Nonnegative Factor Model with Optimal Utilization of Error-Estimates of Data Values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Lanz, V.A.; Alfarra, M.R.; Baltensperger, U.; Buchmann, B.; Hueglin, C.; Prévôt, A.S.H. Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra. Atmos. Chem. Phys. 2007, 7, 1503–1522. [Google Scholar] [CrossRef]
- Ulbrich, I.M.; Canagaratna, M.R.; Zhang, Q.; Worsnop, D.R.; Jimenez, J.L. Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmos. Chem. Phys. 2009, 9, 2891–2918. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot). Available online: https://www.eia.gov/dnav/ng/hist/nga_epg0_vgth_smi_btucfm.htm (accessed on 23 September 2023).
- Olaguer, E.P. Combining Real-Time Ambient Air Measurements with Inverse Modeling to Estimate Oil and Gas Industry Emissions. EM Mag. Environ. Manag. 2023, 2023, 9–14. [Google Scholar]
- Xia, T.; Raneses, J.; Batterman, S. Improving the Performance of Pipeline Leak Detection Algorithms for the Mobile Monitoring of Methane Leaks. Atmosphere 2022, 13, 1043. [Google Scholar] [CrossRef]
- Healy, R.M.; Sofowote, U.M.; Wang, J.M.; Chen, Q.; Todd, A. Spatially Resolved Source Apportionment of Industrial VOCs Using a Mobile Monitoring Platform. Atmosphere 2022, 13, 1722. [Google Scholar] [CrossRef]
- Government of Canada. National Pollutant Release Inventory (NPRI); Government of Canada: Ottawa, ON, USA, 2021; Available online: https://www.canada.ca/en/services/environment/pollution-waste-management/national-pollutant-release-inventory.html (accessed on 23 September 2023).
- Parrish, D.D.; Ryerson, T.B.; Mellqvist, J.; Johansson, J.; Fried, A.; Richter, D.; Walega, J.G.; Washenfelder, R.A.; de Gouw, J.A.; Peischl, J.; et al. Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region. Atmos. Chem. Phys. 2012, 12, 3273–3288. [Google Scholar] [CrossRef]
Facility ID | Facility Type | Noteworthy Species | Fingerprint Ratios | Denominator |
---|---|---|---|---|
MA130 | Industrial Coatings | Acetone, C9-aromatics | Ac: 3.17–22.2 C6: 0–0.06 C7: 0.3–0.4 C8: 0–0.06 C9: 0.04–0.6 | Total C6–C9 Aromatics |
MA237 | Industrial cleaning | C9 and C8-aromatics, acetone | Ac: 0–0.14 C6: 0–0.13 C7: 0.30–0.44 C8: 0.05–0.35 C9:0.48–0.23 | Total C6–C9 Aromatics |
SA96 | Adhesives Manufacturer | Toluene, phenol, | Ac: 0 C6: 0 C7: 0.99 C8: 0 C9: 0 Phenol: 0.11 | Total C6–C9 Aromatics |
WA236 | Chemical Waste | Acetone, BTEX, oxygenated VOCs, CH2Cl2 See SI. | Varies. a. Ac: 1.5–8.4 C6: 0.4–0.18 C7: 0.2–0.8 C8: 0.14–0.6 C9: 0–0.06 | Total C6–C9 aromatics |
MA141 | Upstream Oil and Gas | Methane, ethane, HCHO, NOx | Eth: 0.073–0.081 HCHO: 8.4 × 10−4 NOx: 1.6 × 10−3 | CH4 |
WA238 and WA 240 | Distribution Natural Gas | Methane, ethane | Eth: 0.06–0.09 | CH4 |
WA87/WA0 | Automaker/Steel manufacturer | C9, C7-aromatics, HCHO | Varies. a. See SI Ac: 0.1 C6: 0.14–0.31 C7: 0.28–0.40 C8: 0.07–0.66 C9: 0.07–0.64 | Total C6–C9 aromatics |
WA22 | Refinery | BTEX | Varies. See SI. | Total C6–C9 aromatics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yacovitch, T.I.; Lerner, B.M.; Canagaratna, M.R.; Daube, C.; Healy, R.M.; Wang, J.M.; Fortner, E.C.; Majluf, F.; Claflin, M.S.; Roscioli, J.R.; et al. Mobile Laboratory Investigations of Industrial Point Source Emissions during the MOOSE Field Campaign. Atmosphere 2023, 14, 1632. https://doi.org/10.3390/atmos14111632
Yacovitch TI, Lerner BM, Canagaratna MR, Daube C, Healy RM, Wang JM, Fortner EC, Majluf F, Claflin MS, Roscioli JR, et al. Mobile Laboratory Investigations of Industrial Point Source Emissions during the MOOSE Field Campaign. Atmosphere. 2023; 14(11):1632. https://doi.org/10.3390/atmos14111632
Chicago/Turabian StyleYacovitch, Tara I., Brian M. Lerner, Manjula R. Canagaratna, Conner Daube, Robert M. Healy, Jonathan M. Wang, Edward C. Fortner, Francesca Majluf, Megan S. Claflin, Joseph R. Roscioli, and et al. 2023. "Mobile Laboratory Investigations of Industrial Point Source Emissions during the MOOSE Field Campaign" Atmosphere 14, no. 11: 1632. https://doi.org/10.3390/atmos14111632
APA StyleYacovitch, T. I., Lerner, B. M., Canagaratna, M. R., Daube, C., Healy, R. M., Wang, J. M., Fortner, E. C., Majluf, F., Claflin, M. S., Roscioli, J. R., Lunny, E. M., & Herndon, S. C. (2023). Mobile Laboratory Investigations of Industrial Point Source Emissions during the MOOSE Field Campaign. Atmosphere, 14(11), 1632. https://doi.org/10.3390/atmos14111632