The Atmospheric Vortex Streets and Their Impact on Precipitation in the Wake of the Tibetan Plateau
<p>Schematic plot of a Kármán vortex street generated by wind passing a cylindrical obstacle of diameter <span class="html-italic">d</span>. <span class="html-italic">a</span> is the vortex spacing and <span class="html-italic">h</span> is the width of the Kármán vortex street.</p> "> Figure 2
<p>Vertical-temporal distributions of climatological mean values of the zonal wind at the grid (40° E, 32° N) during 1979–2018 (unit: m/s).</p> "> Figure 3
<p>Red line: The seasonal variation in the climatological mean of the height of the dividing streamline <b><span class="html-italic">h<sub>c</sub></span></b> of the Tibetan Plateau (unit: m). Black lines mark 1 standard deviation. The blue line is the threshold above which the stable AVS could exist.</p> "> Figure 4
<p>(<b>a</b>–<b>d</b>) Fourier filtered horizontal structure of 4 cases in daily relative vorticity at 700 hPa for the period of boreal (<b>a</b>) spring (16 March 1992), (<b>b</b>) summer (1 August 1991), (<b>c</b>) autumn (15 September 2002), and (<b>d</b>) winter (15 February 2005) (unit: s<sup>−1</sup>). The green line marks the topography of the Tibetan Plateau. The vector exhibited the Fourier filtered 700 hPa horizontal wind field. (<b>e</b>–<b>h</b>) Same as (<b>a</b>–<b>d</b>) but for the unfiltered field replacing the Fourier filtered field.</p> "> Figure 5
<p>(<b>a</b>–<b>c</b>) Hovmöller diagram of daily relative vorticity at 700 hPa averaged over 110–120° E (unit: 10<sup>−5</sup> s<sup>−1</sup>) for the period of February to April (winter to spring) in (<b>a</b>) 1981, (<b>b</b>) 1984, and (<b>c</b>) 1992. The straight line in panel a is used to represent 32° N, which is roughly the central line of the Tibetan Plateau. Precipitation averaged over 110–120° E was also exhibited by the purple lines (2 levels of 5 mm/day and 15 mm/day). (<b>d</b>–<b>f</b>) Hovmöller diagram of daily relative vorticity at 700 hPa averaged over 28–32° N from March to April in (<b>a</b>) 1981, (<b>b</b>) 1984, and (<b>c</b>) 1992 (unit: 10<sup>−5</sup> s<sup>−1</sup>).</p> "> Figure 6
<p>Hovmöller diagram of (<b>a</b>–<b>c</b>) daily precipitation derived from CPC datasets (unit: mm) and (<b>d</b>–<b>f</b>) daily relative vorticity at 850 hPa (unit: 10<sup>−6</sup> s<sup>−1</sup>) averaged over (<b>a</b>,<b>d</b>) 110–120° E, (<b>b</b>,<b>e</b>) 125–130° E, and (<b>c</b>,<b>f</b>) 130–145° E. The results were smoothed by a pentad temporal domain. Gray represents missing records.</p> "> Figure 7
<p>Hovmöller diagram of (<b>a</b>) daily relative vorticity at 850 hPa (unit: 10<sup>−6</sup> s<sup>−1</sup>) and (<b>b</b>) daily precipitation derived from CPC datasets (unit: mm) for the period from February to September 1983 averaged over 110–120° E. The results were smoothed by a pentad temporal domain.</p> "> Figure 8
<p>Hovmöller diagram of the (<b>a</b>–<b>c</b>) monthly precipitation and (<b>d</b>–<b>f</b>) the ratio of the monthly precipitation closely tied to AVS to the total monthly precipitation averaged over (<b>a</b>,<b>d</b>) 110–120° E, (<b>b</b>,<b>e</b>) 125–130° E, and (<b>c</b>,<b>f</b>) 130–145° E. White represents missing records of land precipitation.</p> "> Figure 9
<p>Hovmöller diagram of (<b>a</b>–<b>c</b>) the yearly frequency of heavy rain days (defined as daily precipitation exceeding 8 mm/day) and the ratio of (<b>d</b>–<b>f</b>) the number of heavy rain days closely tied to AVS to the total number of heavy rain days averaged over (<b>a</b>,<b>d</b>) 110–120° E, (<b>b</b>,<b>e</b>) 125–130° E, and (<b>c</b>,<b>f</b>) 130–145° E. White represents missing records of land precipitation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Spatial Fourier Transform to Derive the AVS Pattern
2.3. The AVS-Related Precipitation and Heavy Rain Days
3. Results
3.1. Topography of the Tibetan Plateau and Surrounding Meteorological Conditions
3.2. Characteristics of the AVS on the Leeward Side of the Tibetan Plateau
3.3. The Properties of the AVS on the Leeward Side of the Tibetan Plateau
3.4. Impacts of the AVS on Precipitation over the Wake of the Tibetan Plateau
4. Conclusions
- (1)
- The meteorological factors around the Tibetan Plateau satisfy conditions in which a stable vortex street on the lee side of an obstacle can exist for the whole year. The Froude number varies from 0.2 to 0.3 and falls in the range of Froude numbers that could support vortex shedding for the whole year, whereas the Reynolds number was estimated to be 0.7 × 104–2.4 × 104 in winter and 0.4 × 104–1.2 × 104 in summer. Both of these dimensionless indices fall in the range of meteorological conditions summarized by previous studies [27].
- (2)
- The spatiotemporal structures indicate that the wake on the leeward side of the Tibetan Plateau showed seasonal variations. The wake was characterized by a stable vortex street with a southwest-northeast orientation in summer and early autumn but with a west-east orientation in other seasons. The differences in the centerline orientation among various seasons may be related to the difference in the position of the Western Pacific Subtropical Anticyclone. The wake in the Tibetan Plateau bears a close resemblance to that of the classic von Kármán vortex-street patterns observed in laboratory flow experiments. Moreover, various properties, including aspect ratio, Strouhal number, etc., calculated for these AVSs are in the same range as previous studies. Thus, the wake on the leeward side of the Tibetan Plateau can be interpreted as the atmospheric analog of classic von Kármán vortex streets in various seasons.
- (3)
- We further show that the spatiotemporal structure of precipitation was largely shared by that of cyclonic activities in the AVS, both in the climatological mean and case study. Approximately 80–90% of the precipitation and heavy rain days in the main rainband over the wake of the Tibetan Plateau are closely tied to the seasonal evolution of the AVS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- von Kármán, T. Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfärt. 1. Teil, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl. 1911, 1911, 509–517. [Google Scholar]
- von Kármán, T. Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfärt. 2. Teil, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl. 1912, 1912, 547–556. [Google Scholar]
- Kundu, P.K. Fluid Dynamics; Academic Press: San Diego, CA, USA, 1990; pp. 321–338. [Google Scholar]
- Nunalee, C.G.; Basu, S. On the periodicity of atmospheric von Kármán vortex streets. Environ. Fluid Mech. 2014, 14, 1335–1355. [Google Scholar] [CrossRef]
- Barton, E.D.; Basterretxea, G.; Flament, P.; Mitchelson-Jacob, E.G.; Jones, B.; Arîstegui, J.; Herrera, F. Lee region of gran canaria. J. Geophys. Res.-Oceans 2000, 105, 17173–17193. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Clemente-Colón, P.; Pichel, W.G. Atmospheric vortex streets on a RADARSAT SAR image. Geophys. Res. Lett. 2000, 27, 1655–1658. [Google Scholar] [CrossRef]
- Young, G.S.; Zawislak, J. An observational study of vortex spacing in island wake vortex streets. Mon. Weather Rev. 2006, 134, 2285–2294. [Google Scholar] [CrossRef]
- Dong, C.; McWilliams, J.C.; Shchepetkin, A.F. Island wakes in deep water. J. Phys. Oceanogr. 2007, 37, 962–981. [Google Scholar] [CrossRef]
- Zheng, Q.; Lin, H.; Meng, J.; Hu, X.; Song, Y.T.; Zhang, Y.; Li, C. Sub-mesoscale ocean vortex trains in the Luzon Strait. J. Geophys. Res.-Oceans 2008, 113, C04032. [Google Scholar] [CrossRef] [Green Version]
- Teinturier, S.; Stegner, A.; Didelle, H.; Viboud, S. Small-scale instabilities of an island wake flow in a rotating shallow-water layer. Dyn. Atmos. Oceans 2010, 49, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Topouzelis, K.; Kitsiou, D. Detection and classification of mesoscale atmospheric phenomena above sea in SAR imagery. Remote Sens. Environ. 2015, 160, 263–272. [Google Scholar] [CrossRef]
- Caldeira, R.M.A.; Groom, S.; Miller, P.; Pilgrim, D.; Nezlin, N.P. Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens. Environ. 2002, 80, 336–360. [Google Scholar] [CrossRef]
- Caldeira, R.M.A.; Marchesiello, P.; Nezlin, N.P.; DiGiacomo, P.M.; McWilliams, J.C. Island wakes in theSouthern California Bight. J. Geophys. Res.-Oceans 2005, 110, C11012. [Google Scholar] [CrossRef]
- Hasegawa, D.; Yamazaki, H.; Lueck, R.G.; Seuront, L. How islands stir and fertilize the upper ocean. Geophys. Res. Lett. 2004, 31, L16303. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, D.; Lewis, M.R.; Gangopadhyay, A. How islands cause phytoplankton to bloom in their wakes. Geophys. Res. Lett. 2009, 36, L20605. [Google Scholar] [CrossRef]
- Horváth, Á.; Bresky, W.; Daniels, J.; Vogelzang, J.; Stoffelen, A.; Carr, J.L.; Wu, D.L.; Seethala, C.; Günther, T.; Buehler, S.A. Evolution of an Atmospheric Kármán Vortex Street from High-Resolution Satellite Winds: Guadalupe Island Case Study. J. Geophys. Res.-Atmos. 2020, 125, e2019JD032121. [Google Scholar] [CrossRef] [Green Version]
- Lettau, H. Atmosphärische Turbulenz. Akad. Verl. Leipz. 1939, 283. [Google Scholar]
- Hubert, L.F.; Krueger, A.F. Satellite Pictures of Mesoscale Eddies. Mon. Weather Rev. 1962, 90, 457–463. [Google Scholar] [CrossRef]
- Chopra, K.P.; Hubert, L.F. Kármán vortex streets in earth’s atmosphere. Nature 1964, 203, 1341–1343. [Google Scholar] [CrossRef]
- Chopra, K.P.; Hubert, L.F. Mesoscale Eddies in Wake of Islands. J. Atmos. Sci. 1965, 22, 652–657. [Google Scholar] [CrossRef]
- Lyons, W.A.; Fujita, T. Mesoscale motions in oceanic stratus as revealed by satellite data. Mon. Weather Rev. 1968, 96, 304–314. [Google Scholar] [CrossRef]
- Tsuchiya, K. The clouds with the shape of Kármán vortex street in the wake of Cheju Island, Korea. J. Meteorol. Soc. JPN Ser. II 1969, 47, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, L.I. Atmospheric wake phenomena near the Canary Islands. J. Appl. Meteorol. Clim. 1969, 8, 896–907. [Google Scholar] [CrossRef]
- Chopra, K.P. Atmospheric and Oceanic Flow Problems Introduced by Islands. In Advances in Geophysics; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Thomson, R.E.; Gower, J.; Bowker, N.W. Vortex Streets in the Wake of the Aleutian Islands. Mon. Weather Rev. 1977, 105, 873–884. [Google Scholar] [CrossRef]
- Jensen, N.O.; Agee, E.M. Vortex cloud street during AMTEX 75. Tellus 1978, 30, 517–523. [Google Scholar] [CrossRef]
- Etling, D. On atmospheric vortex streets in the wake of large islands. Meteorol. Atmos. Phys. 1989, 41, 157–164. [Google Scholar] [CrossRef]
- Li, X.; Zheng, W.; Zou, C.Z.; Pichel, W.G. A SAR Observation and Numerical Study on Ocean Surface Imprints of Atmospheric Vortex Streets. Sensors 2008, 8, 3321–3334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couvelard, X.; Caldeira, R.M.A.; Araújo, I.B.; Tomé, R. Wind mediated vorticity-generation and eddy-confinement, leeward of the Madeira Island: 2008 numerical case study. Dynam. Atmos. Oceans 2012, 58, 128–149. [Google Scholar] [CrossRef]
- Caldeira, R.M.; Tomé, R. Wake response to an ocean-feedback mechanism: Madeira Island case study. Bound.-Lay. Meteorol. 2013, 148, 419–436. [Google Scholar] [CrossRef] [Green Version]
- Ito, J.; Niino, H. Atmospheric Kármán Vortex Shedding from Jeju Island, East China Sea: A Numerical Study. Mon. Weather Rev. 2015, 144, 139–148. [Google Scholar] [CrossRef]
- Papailiou, D.D.; Lykoudis, P.S. Turbulent vortex streets and the entrainment mechanism of the turbulent wake. J. Fluid Mech. 1974, 62, 11–31. [Google Scholar] [CrossRef]
- Yeh, T. The circulation of the high troposphere over China in the winter of 1945–46. Tellus 1950, 2, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Bolin, B. On the Influence of the Earth’s Orography on the General Character of the Westerlies. Tellus 2016, 2, 184–195. [Google Scholar] [CrossRef]
- Queney, P. The problem of air flow over mountains: A summary of theoretical studies. Bull. Am. Meteorol. Soc. 1948, 29, 16–26. [Google Scholar] [CrossRef]
- Charney, J.G.; Eliassen, A. A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus 1949, 1, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.X. The nonlinear response of the atmosphere to large-scale mechanical and thermal forcing. J. Atmos. Sci. 1984, 41, 2456–2476. [Google Scholar] [CrossRef]
- Wang, Q.; Tan, Z.-M. Multi-scale topographic control of southwest vortex formation in Tibetan Plateau region in an idealized simulation. J. Geophys. Res.-Atmos. 2014, 119, 11543–11561. [Google Scholar] [CrossRef]
- Zhang, G.; Mao, J.; Liu, Y.; Wu, G. PV perspective of impacts on downstream extreme rainfall event of a Tibetan Plateau vortex collaborating with a southwest China vortex. Adv. Atmos. Sci. 2021, 38, 1835–1851. [Google Scholar] [CrossRef]
- Wu, G.; Tang, Y.; He, B.; Liu, Y.; Mao, J.; Ma, T.; Ma, T. Potential vorticity perspective of the genesis of a Tibetan Plateau vortex in June 2016. Clim. Dyn. 2022, 58, 3351–3367. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Guo, B.; Ma, Z.; Li, X.; Ye, X.; Yu, H.; Liu, Y.; Yang, C.; Zhang, S.; et al. Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region, western Chinese Loess Plateau. Quat. Sci. Rev. 2016, 139, 17–29. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppalaa, S.M.; Simmonsa, A.J.; Berrisforda, P.; Polia, P.; Kobayashib, S.; Andraec, U.; Balmasedaa, M.A.; Balsamoa, G.; Bauera, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Curio, J.; Schiemann, R.; Hodges, K.I.; Turner, A.G. Climatology of Tibetan Plateau vortices in reanalysis data and a high-resolu- tion global climate model. J. Clim. 2019, 32, 1933–1950. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Wayne Higgins, R.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res.-Atmos. 2008, 113, D04110. [Google Scholar] [CrossRef]
- Yatagai, A.; Arakawa, O.; Kamiguchi, K.; Kawamoto, H.; Nodzu, M.I.; Hamada, A. A 44-Year Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Sola 2009, 5, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.; Kiladis, G.N. Convectively coupled equatorial waves:analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 1999, 56, 374–399. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Wheeler, M.C.; Haertel, P.T.; Straub, K.H.; Roundy, P.E. Convectively coupled equatorial waves. Rev. Geophys. 2009, 47, 2008RG000266. [Google Scholar] [CrossRef]
- Hawcroft, M.K.; Shaffrey, L.C.; Hodges, K.I.; Dacre, H.F. How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett. 2012, 39, L24809. [Google Scholar] [CrossRef] [Green Version]
- Hanley, J.; Caballero, R. Objective identification and tracking of multicentre cyclones in the ERA-Interim reanalysis dataset. Q. J. R. Meteorol. Soc. 2012, 138, 612–625. [Google Scholar] [CrossRef]
- Snyder, W.H.; Thomson, R.S.; Eskridge, R.E.; Lawson, R.E.; Castro, I.P.; Lee, S.T.; Hunt, J.C.R.; Ogawa, J. The structure of strongly stratified flows over hills: Dividing streamline concept. J. Fluid Mech. 1985, 152, 249–288. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Chen, S.C. Planetary waves kinematically forced by Himalayan orography. J. Atmos. Sci. 2010, 45, 2934–2948. [Google Scholar] [CrossRef]
- Roshko, A. On the Development of Turbulent Wakes from Vortex Streets (No. NACA-TR-1191). Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1954. [Google Scholar]
Date | a (km) | h (km) | h/a | Ue (m/s) | Uo (m/s) | Te (hour) | Re | S |
---|---|---|---|---|---|---|---|---|
1981/3/18 | 2791 | 1196 | 0.462 | 5.66 | 7.28 | 137 | 7.28 × 103 | 0.279 |
1981/4/8 | 3074 | 525 | 0.201 | 10.40 | 19.40 | 82 | 1.24 × 104 | 0.273 |
1981/4/19 | 2478 | 1458 | 0.588 | 8.39 | 9.99 | 82 | 1.56 × 104 | 0.216 |
1981/4/24 | 3440 | 741 | 0.217 | 11.12 | 20.74 | 86 | 1.59 × 104 | 0.204 |
1984/3/14 | 3087 | 1083 | 0.381 | 7.20 | 10.27 | 119 | 8.58 × 103 | 0.272 |
1984/4/7 | 3195 | 1088 | 0.343 | 17.78 | 28.38 | 50 | 2.27 × 104 | 0.245 |
1984/4/21 | 2622 | 982 | 0.366 | 9.11 | 13.27 | 80 | 1.70 × 104 | 0.205 |
1984/4/25 | 3036 | 989 | 0.326 | 10.27 | 17.29 | 82 | 1.22 × 104 | 0.278 |
1992/3/23 | 3538 | 1023 | 0.327 | 13.83 | 23.28 | 71 | 1.97 × 104 | 0.198 |
1992/2/15 | 3807 | 1298 | 0.241 | 12.95 | 24.14 | 86 | 2.41 × 104 | 0.133 |
1992/4/1 | 3576 | 1066 | 0.313 | 9.20 | 17.15 | 108 | 1.71 × 104 | 0.150 |
2004/2/15 | 2987 | 1211 | 0.268 | 8.43 | 15.72 | 108 | 1.57 × 104 | 0.164 |
Date | a (km) | h (km) | h/a | Ue (m/s) | Uo (m/s) | Te (hour) | Re | S |
---|---|---|---|---|---|---|---|---|
1981/8/12 | 1392 | 825 | 0.594 | 5.95 | 7.08 | 65 | 8.66 × 103 | 0.493 |
1981/8/16 | 2270 | 842 | 0.376 | 5.84 | 8.33 | 108 | 7.45 × 103 | 0.345 |
1981/8/20 | 1978 | 911 | 0.465 | 6.96 | 8.87 | 79 | 1.17 × 104 | 0.300 |
1981/8/24 | 1795 | 1070 | 0.600 | 5.60 | 6.65 | 89 | 1.04 × 104 | 0.299 |
1984/7/2 | 2520 | 1472 | 0.591 | 6.09 | 7.25 | 115 | 1.02 × 104 | 0.236 |
1984/7/6 | 1842 | 841 | 0.475 | 3.60 | 4.56 | 142 | 4.63 × 103 | 0.422 |
1984/7/10 | 1790 | 826 | 0.469 | 3.50 | 4.46 | 142 | 4.82 × 103 | 0.406 |
1984/7/14 | 2024 | 563 | 0.291 | 5.98 | 11.14 | 94 | 7.25 × 103 | 0.407 |
1992/7/2 | 2204 | 1008 | 0.457 | 4.90 | 6.30 | 125 | 9.13 × 103 | 0.243 |
1992/7/6 | 1483 | 824 | 0.552 | 4.21 | 5.10 | 98 | 4.92 × 103 | 0.576 |
1992/7/10 | 1383 | 877 | 0.635 | 2.49 | 2.92 | 154 | 3.49 × 103 | 0.517 |
1992/7/14 | 1687 | 1293 | 0.767 | 3.04 | 3.45 | 154 | 3.45 × 103 | 0.523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Wu, Z.; Tan, Z.-M.; Yang, F.; Fu, C. The Atmospheric Vortex Streets and Their Impact on Precipitation in the Wake of the Tibetan Plateau. Atmosphere 2023, 14, 1096. https://doi.org/10.3390/atmos14071096
Liu Q, Wu Z, Tan Z-M, Yang F, Fu C. The Atmospheric Vortex Streets and Their Impact on Precipitation in the Wake of the Tibetan Plateau. Atmosphere. 2023; 14(7):1096. https://doi.org/10.3390/atmos14071096
Chicago/Turabian StyleLiu, Qi, Zhaohua Wu, Zhe-Min Tan, Fucheng Yang, and Congbin Fu. 2023. "The Atmospheric Vortex Streets and Their Impact on Precipitation in the Wake of the Tibetan Plateau" Atmosphere 14, no. 7: 1096. https://doi.org/10.3390/atmos14071096