Designation of Environmental Impacts and Damages of Turbojet Engine: A Case Study with GE-J85
<p>Schematic diagram of a basic turbojet engine.</p> "> Figure 2
<p>(<b>a</b>) Ecosystem Quality Damages (EQD) variation with Altitude and Mach number; (<b>b</b>) Human Health Damages (HHD) variation with Altitude and Mach number; (<b>c</b>) Resources Damages (RD) variation with Altitude and Mach number.</p> "> Figure 3
<p>Total fuel consumption variation with Altitude and Mach number.</p> "> Figure 4
<p>Variation of Mach number and Altitude with (<b>a</b>) Specific Fuel Consumption Impact of EQ; (<b>b</b>) Specific Fuel Consumption Impact of HH; (<b>c</b>) Specific Fuel Consumption Impact of R.</p> "> Figure 5
<p>Variation of Mach number and Altitude with total Specific Fuel Consumption Impact.</p> "> Figure 6
<p>Variation of Mach number and Altitude with Thrust Environmental Impact (TEI).</p> ">
Abstract
:1. Introduction
- Damages are devised for the turbojet engines.
- Specific fuel consumption impacts are found for total and each damage categories.
- The Thrust Environmental Impact (TEI), described for first time in the literature, is calculated.
- For all damages and impacts are calculated for different altitudes and Mach numbers.
2. System Modeling and Methods
2.1. Description of Aircraft Engines
- Inlet section has a one pressure recovery value.
- Compressor section has six stages. The pressure ratio is 8.3, and the compressor efficiency is 82.2%.
- The burning efficiency of the combustor chamber is 98.2%, and the maximum temperature value is approximately 1260 K. In this study, besides Jet-A fuel, liquid hydrogen was used for calculation parameters. Meanwhile, Jet-A has a 43,260 kJ/kg LHV, 790 kg/m3 density, Liquid Hydrogen has a 116,059 kJ/kg LHV, 76.39 kg/m3 density.
- The turbine section has two stages, and the turbine efficiency is 88.2%.
- The outlet of the nozzle section is approximately two times higher than the outlet of the inlet section. In addition, the nozzle efficiency is 97%.
2.2. Atmospheric Implications
- Engine thrust
- Fuel specifications and consumption
- Stationary pressure and temperature, especially inlet and outlet of combustor chamber
3. Results and Discussion
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Balli, O.; Aras, H.; Aras, N.; Hepbasli, A. Exergetic and exergoeconomic analysis of an Aircraft Jet Engine (AJE). Int. J. Exergy 2008, 5, 567–581. [Google Scholar] [CrossRef]
- Mattingly, J.D. Aircraft Gas Turbine Engine. In Elements of Gas Turbine Propulsion; McGraw-Hill: Singapore, 1996; pp. 1–96. [Google Scholar]
- Torenbeek, E. Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design of Subsonic General Aviation and Transport Aircraft, with Emphasis on Layout, Aerodynamic Design, Propulsion and Performance; Springer: Dordrech, The Netherlands, 1982. [Google Scholar]
- Köhler, I.; Sausen, R.; Reinberger, R. Contributions of aircraft emissions to the atmospheric NOx content. Atmos. Environ. 1997, 31, 1801–1818. [Google Scholar] [CrossRef]
- Schumann, U. The impact of nitrogen oxides emissions from aircraft upon the atmosphere at flight altitudes-results from the aeronox project. Atmos. Environ. 1997, 31, 1723–1733. [Google Scholar] [CrossRef]
- Stevenson, D.S.; Collins, W.J.; Johnson, C.E.; Derwent, R.G. The impact of aircraft nitrogen oxide emissions on tropospheric ozone studied with a 3-D Lagrangian model including fully diurnal chemistry. Atmos. Environ. 1997, 31, 1837–1850. [Google Scholar] [CrossRef]
- Tsague, L.; Tatietse, T.T.; Ngundam, J.; Tsogo, J. Prediction of emissions in turbojet engines exhausts: relationship between nitrogen oxides emission index (EINOx) and the operational parameters. Aerosp. Sci. Technol. 2007, 11, 459–463. [Google Scholar] [CrossRef]
- International Civil Aviation Organization (ICAO). Airport Air Quality Guidance Manual; Report No. Doc 9889; ICAO: Montreal, QC, Canada, 2007; pp. 1–114. [Google Scholar]
- Gonzalez, R.K. Annual Report of the Council 2008; Report No. Doc-9916; ICAO: Montreal, QC, Canada, 2009; pp. 1–146. [Google Scholar]
- Garrett, P.; Casimiro, E.; Pulquério, M.; Santos, F.D. Statistical approach to estimate the impact of climate change on daily ozone concentrations. Int. J. Glob. Warm. 2012, 4, 273–286. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Kharecha, P.; Beerling, D.; Berner, R.; Masson-Delmotte, V.; Raymo, M.; Royer, D.L.; Zachos, J.C. Target atmospheric CO2: Where should humanity aim? Open Atmos. Sci. J. 2008, 2, 217–231. [Google Scholar] [CrossRef]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. Climate Change 2001: The Scientific Basis. In Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2001; pp. 1–94. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK/New York, NY, USA, 2007; pp. 1–1007. [Google Scholar]
- Lynas, M. 6 Derece: Isınan. Dünyadaki. Geleceğimiz. (Turkish of “Six Degrees: Our Future on a Hotter Planet”); NTV publications: Istanbul, Turkey, 2008. [Google Scholar]
- Tarrason, L.; Eiof Jonson, J.; Berntsen, T.K.; Rypdal, K. Study on Air Quality Impacts of Non-LTO Emissions from Aviation; Report to the European Commission under contract B4–3040/2002/343093/MAR/C1. 2004. Available online: http://www.europa.nl/environment/air/pdf/air_quality_impacts_finalreport.pdf (accessed on 25 September 2013).
- Whitt, D.B.; Jacobson, M.Z.; Wilkerson, J.T.; Naiman, A.D.; Lele, S.K. Vertical mixing of commercial aviation emissions from cruise altitude to the surface. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Beck, J.P.; Reeves, C.E.; de Leeuw, F.; Penkett, S.A. The effect of aircraft emissions on tropospheric ozone in the northern Hemisphire. Atmos. Environ. 1992, 26, 17–29. [Google Scholar]
- Mazaheri, M.; Johnson, G.R.; Morawska, L. An inventory of particle and gaseous emissions from large aircraft thrust engine operations at an airport. Atmos. Environ. 2011, 45, 3500–3507. [Google Scholar] [CrossRef]
- Farias, F.; ApSimon, H. Relative contributions from traffic and aircraft NOx emissions to exposure in west London. Environ. Model. Softw. 2006, 21, 477–485. [Google Scholar] [CrossRef]
- Cleveland, C.J. Encyclopedia of Energy; Elsevier Academic Press: Waltham, MA, USA, 2004. [Google Scholar]
- Altuntas, O. Calculation of domestic flight-caused global warming potential from aircraft emissions in Turkish airports. Int. J. Glob. Warm. 2014, in press. [Google Scholar]
- Kurniawan, J.S.; Khardi, S. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports. Environ. Impact Assess. Rev. 2011, 31, 240–252. [Google Scholar] [CrossRef]
- Mahashabde, A.; Wolfe, P.; Ashok, A.; Dorbian, C.; He, Q.; Fan, A.; Lukachko, S.; Mozdzanowska, A.; Wollersheim, C.; Barrett, S.R.H.; et al. Assessing the environmental impacts of aircraft noise and emissions. Prog. Aeros. Sci. 2011, 47, 15–52. [Google Scholar] [CrossRef]
- Zhu, Y.; Fanning, E.; Yu, R.C.; Zhang, Q.; Froines, J.R. Aircraft emissions and local air quality impacts from takeoff activities at a large International Airport. Atmos. Environ. 2011, 45, 6526–6533. [Google Scholar] [CrossRef]
- Carr, E.; Lee, M.; Marin, K.; Holder, C.; Hoyer, M.; Pedde, M.; Cook, R.; Toumac, J. Development and evaluation of an air quality modeling approach to assess near-field impacts of lead emissions from piston-engine aircraft operating on leaded aviation gasoline. Atmos. Environ. 2011, 45, 5795–5804. [Google Scholar] [CrossRef]
- Schürmann, G.; Schäfer, K.; Jahn, C.; Hoffmann, H.; Bauerfeind, M.; Fleuti, E.; Rappenglück, B. The impact of NOx, CO and VOC emissions on the air quality of Zurich airport. Atmos. Environ. 2007, 41, 103–118. [Google Scholar] [CrossRef]
- Unal, A.; Hu, Y.; Chang, M.E.; Odman, M.T.; Russell, A.G. Airport related emissions and impacts on air quality: Application to the Atlanta international airport. Atmos. Environ. 2005, 39, 5787–5798. [Google Scholar] [CrossRef]
- Ratliff, G.; Sequeira, C.; Waitz, I.; Ohsfeldt, M.; Thrasher, T.; Graham, M.; Thompson, T. Aircraft Impacts on Local and Regional Air Quality in The United States; Final Report of PARTNER Project 15, Report No. PARTNER-COE-2009–002; Massachusetts Institute of Technology: Cambridge, MA, USA, 2009. [Google Scholar]
- Celikel, A.; Duchene, N.; Fuller, I.; Fleuti, E.; Hofmann, P. Airport local air quality modelling: Zurich airport emissions inventory using three methodologies. 2005. Available online: http://www.eurocontrol.int/eec/public/standard_page/DOC_Conf_2005_007.html (accessed on 23 May 2013).
- Yim, S.H.L.; Stettler, M.E.J.; Barrett, S.R.H. Air quality and public health impacts of UK airports. Part II: Impacts and policy assessment. Atmos. Environ. 2013, 67, 184–192. [Google Scholar] [CrossRef]
- Stettler, M.E.J.; Eastham, S.; Barrett, S.R.H. Air quality and public health impacts of UK airports. Part I: Emissions. Atmos. Environ. 2011, 45, 5415–5424. [Google Scholar] [CrossRef]
- Lee, H.I. The Air Quality and Health Impacts of Aviation in Asia. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012. [Google Scholar]
- Garnier, F.; Baudoin, C.; Woods, P.; Louisnard, N. Engine emission alteration in the near field of an aircraft. Atmos. Environ. 1997, 31, 1767–1781. [Google Scholar] [CrossRef]
- Herndon, S.C.; Onasch, T.B.; Frank, B.P.; Marr, L.C.; Jayne, J.T.; Canagaratna, M.R.; Grygas, J.; Lanni, T.; Anderson, B.E.; Worsnop, D.; et al. Particulate emissions from in-use commercial aircraft. Aerosol Sci. Technol. 2005, 39, 799–809. [Google Scholar] [CrossRef]
- Yu, K.N.; Cheung, Y.P.; Cheung, T.; Henry, R.C. Identifying the impact of large urban airports on local air quality by nonparametric regression. Atmos. Environ. 2004, 38, 4501–4507. [Google Scholar] [CrossRef]
- Leibensperger, E.M.; Mickley, L.J.; Jacob, D.J.; Barrett, S.R.H. Intercontinental influence of NOx and CO emissions on particulate matter air quality. Atmos. Environ. 2011, 45, 3318–3324. [Google Scholar] [CrossRef]
- Heathrow Air Quality Strategy, 2011–2020. Available online: http://www.heathrowairport.com/static/Heathrow/Downloads/PDF/air-quality-strategy_LHR.pdf (accessed on 08 March 2013).
- Vedantham, A.; Oppenheimer, M. Long-term scenarios for aviation: Demand and emissions of CO2 and NOx. Energy Policy 1998, 26, 625–641. [Google Scholar] [CrossRef]
- Geelen, L.M.J.; Hujibregts, M.A.J.; Hollander, H.D.; Ragas, A.M.J.; Jaarsveld, H.A.V.; Zwart, D.D. Confronting environmental pressure, environmental quality and human health impact indicators of priority air emissions. Atmos. Environ. 2009, 43, 1613–1621. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.N.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar]
- Lee, D.S.; Pitari, G.; Grewe, V.; Gierens, K.; Penner, J.E.; Petzold, A.; Prather, M.J.; Schumann, U.; Bais, A.; Berntsen, T.; et al. Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 2010, 44, 4678–4734. [Google Scholar]
- Dorbian, C.S.; Wolfe, P.J.; Waitz, I.A. Estimating the climate and air quality benefits of aviation fuel and emissions reductions. Atmos. Environ. 2011, 45, 2750–2759. [Google Scholar] [CrossRef]
- Koo, J.; Wang, Q.; Henze, D.K.; Waitz, I.A.; Barrett, S.R.H. Spatial sensitivities of human health risk to intercontinental and high-altitude pollution. Atmos. Environ. 2013, 71, 140–147. [Google Scholar] [CrossRef]
- Zachary, D.S.; Gervais, J.; Leopold, U. Multi-impact optimization to reduce aviation noise and emissions. Transp. Res. D 2010, 15, 82–93. [Google Scholar] [CrossRef]
- Pham, V.V.; Tang, J.; Alam, S.; Lokan, C.; Abbass, H.A. Aviation emission inventory development and analysis. Environ. Model. Softw. 2010, 25, 1738–1753. [Google Scholar] [CrossRef]
- Wulff, A.; Hourmouziadis, J. Technology review of aeroengine pollutant emissions. Aerosp. Sci. Technol. 1997, 1, 557–572. [Google Scholar] [CrossRef]
- Kaygusuz, K. Energy policy and climate change in Turkey. Energy Conversat. Manag. 2003, 44, 1671–1688. [Google Scholar] [CrossRef]
- Lee, S.H.; le Dilosquer, M.; Singh, R.; Rycroft, M.J. Further considerations of engine emissions from subsonic aircraft at cruise altitude. Atmos. Environ. 1996, 30, 3689–3695. [Google Scholar] [CrossRef]
- Kesgin, U. Aircraft emissions at Turkish airports. Energy 2006, 31, 372–384. [Google Scholar] [CrossRef]
- Altuntas, O.; Karakoc, T.H. Investigation of the environmental concern in aircraft selection for domestic flights in some Turkish airports (In Turkish). J. Aeronaut. Space Technol. 2010, 5, 11–18. [Google Scholar]
- Kinsey, J.S.; Yong, D.; Williams, D.C.; Logan, R. Physical characterization of the fine particle emissions from commercial aircraft engines during the aircraft particle emissions experiment. Atmos. Environ. 2010, 44, 2147–2156. [Google Scholar] [CrossRef]
- Nikoleris, T.; Guptab, G.; Kistler, M. Detailed estimation of fuel consumption and emissions during aircraft taxi operations at Dallas/Fort worth international airport. Transp. Res. D 2011, 16, 302–308. [Google Scholar]
- Fan, W.; Sun, Y.; Zhu, T.; Wen, Y. Emissions of HC, CO, NOx, CO2 and SO2 from civil aviation in China in 2010. Atmos. Environ. 2012, 56, 52–57. [Google Scholar] [CrossRef]
- Ahmadi, P.; Dincer, I. Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Appl. Thermal Eng. 2011, 31, 29–40. [Google Scholar]
- Altuntas, O.; Karakoc, T.H.; Hepbasli, A. Exergoenvironmental analysis of pistonprop aircrafts. Exergy. Int. J. 2012, 10, 290–298. [Google Scholar]
- Atilgan, R.; Turan, O.; Altuntaş, O.; Aydın, H.; Synylo, K. Environmental impact assessment of a turboprop engine with the aid of exergy. Energy 2013, 58, 664–671. [Google Scholar] [CrossRef]
- Ahmadi, P.; Dincer, I. Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA). Energy 2010, 35, 5161–5172. [Google Scholar]
- Vlek, S.M.; Vogels, M. AERO—Aviation emissions and evaluation of reduction options. Air Space Eur. 2000, 2, 41–44. [Google Scholar] [CrossRef]
- Hoch, R.G.; Berthelot, M. Use of the bertin aérotrain for the investigation of flight effects on aircraft engine exhaust noise. J. Sound Vib. 1977, 54, 153–172. [Google Scholar] [CrossRef]
- Brewer, G.D. Aviation usage of liquid hydrogen fuel—Prospects and problems. Int. J. Hydrog. Energy 1976, 1, 65–88. [Google Scholar] [CrossRef]
- Jarymowycz, T.A.; Mellor, A.M. Effects of alternative fuels on ignition limits of the J85 annular combustor. J. Propuls. Power 1987, 3, 283–288. [Google Scholar] [CrossRef]
- General Electric. Available online: http://www.geaviation.com/engines/military/j85/ (accessed on 15 September 2013).
- Seitchek, G.D. Aircraft Engine Emissions Estimator; No. afesc/esl-tr-85–14; Air Force Engineering and Services Center Tyndall Afb Fl Engineering and services lab: Virginia, USA, 1985; pp. 1–101. [Google Scholar]
- Anderson, B.E.; Branham, H.S.; Hudgins, C.H.; Plant, J.V.; Ballenthin, J.O.; Miller, T.M.; Canagaratna, M. Experiment to Characterize Aircraft Volatile Aerosol and Trace-species Emissions (EXCAVATE); Report (NASA/TM-2005-213783); National Aeronautics and Space Administration: Virginia, VA, USA, 2005; pp. 1–178. [Google Scholar]
- German, R.C.; High, M.D.; Robinson, C.E. Measurement of Exhaust Emissions from a 185-GE-5B Engine at Simulated High-Altitude Supersonic Free-Stream Flight Conditions; No. AEDC-TR-73–103; Arnold Engineering Development Center Arnold Afs Tn: Springfield, MA, USA, 1973; pp. 1–140. [Google Scholar]
- Roth, B.; Mavris, D. Method for propulsion technology impact evaluation via thermodynamic work potential. J. Aircr. 2003, 40, 56–61. [Google Scholar] [CrossRef]
- Roth, B.A. A Theoretical Treatment of Technical Risk in Modern Propulsion System Design. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2000. [Google Scholar]
- NASA Glenn EngineSim, Version 1.6e (online application); Available online: http://www.grc.nasa.gov/WWW/K-12/airplane/ngnsim.html (accessed on 2 December 2004).
- Kurzke, J. Manual GasTurb 12.0 for Windows-A Program to Calculate Design and Off-design Performance of Gas Turbines. Technical Report. 2012. Available online: http://www.gasturb.de/Gtb12Manual/GasTurb12.pdf (accessed on 15 September 2013).
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Antoine, N.E. Aircraft Optimization for Minimal Environmental Impact. Ph.D. Thesis, Stanford University, Cardinal, CA, USA, 2004. [Google Scholar]
- Faber, J.; Greenwood, D.; Lee, D.; Mann, M.; de Leon, P.M.; Nelissen, D.; van de Vreede, G. Lower NOx at Higher Altitudes Policies to Reduce the Climate Impact of Aviation NOx Emission; Technical Report; CE Delft: Delft, The Netherlands, 2008. [Google Scholar]
- Altuntas, O.; Karakoc, T.H.; Hepbasli, A. Investigation of environmental impact caused by aircraft engines. Int. J. Glob. Warm. 2013, 5, 282–295. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Implications of the EU Climate Protection Target for Ireland; EPA: Johnstown Castle, Wexford, Ireland, 2006. Available online: http://www.epa.ie/downloads/pubs/research/climate/erc%20report%205.pdf (accessed on 15 April 2012).
- PRé Consultants. SimaPro End User License Agreement (EULA) and Service Level Agreement (SLA). 2006. Available online: www.pre.nl (accessed on 20 May 2014).
- Goedkoop, M.; Spriensma, R. The Eco-indicator 99—A Damage Oriented Method for Life Cycle Assessment; Methodology Report; PRé Consultants b.v.: Amersfoort, The Netherlands, 2000. [Google Scholar]
- Kantardgi, I.; Purvis, M.R.I.; Cherviakov, L.; Khudoshina, M. Approaches to the modelling of energy utilisation in product life cycles. Clean Techn. Environ. Policy 2006, 8, 77–84. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Altuntas, O. Designation of Environmental Impacts and Damages of Turbojet Engine: A Case Study with GE-J85. Atmosphere 2014, 5, 307-323. https://doi.org/10.3390/atmos5020307
Altuntas O. Designation of Environmental Impacts and Damages of Turbojet Engine: A Case Study with GE-J85. Atmosphere. 2014; 5(2):307-323. https://doi.org/10.3390/atmos5020307
Chicago/Turabian StyleAltuntas, Onder. 2014. "Designation of Environmental Impacts and Damages of Turbojet Engine: A Case Study with GE-J85" Atmosphere 5, no. 2: 307-323. https://doi.org/10.3390/atmos5020307