An Evaluation of Orbital Angular Momentum Multiplexing Technology
<p>Generation of OAM modes by a uniform circular array.</p> "> Figure 2
<p>Performance evaluations of: (<b>a</b>) OAMSK (phased gradient method with varying Rx array radius); (<b>b</b>) OAMSK (FFT-based and ML methods); (<b>c</b>) OAMDM with fixed Rx power; and (<b>d</b>) OAMDM with varying Rx array radius.</p> "> Figure 3
<p>Configuration of the Tx and Rx antennas using dielectric lens.</p> "> Figure 4
<p>Experimental environment (OAM multiplexing using dielectric lens).</p> "> Figure 5
<p>Measurement results and simulation results of phase and intensity distributions.</p> "> Figure 6
<p>Experimental beam diameter results.</p> "> Figure 7
<p>Bessel distributions of Rx signals.</p> "> Figure 8
<p>Implemented multiple uniform circular arrays (Four UCAs and a center antenna).</p> "> Figure 9
<p>Experimental environment (OAM multiplexing).</p> "> Figure 10
<p>Experimental environment (OAM-MIMO multiplexing).</p> ">
Abstract
:1. Introduction
2. Background and Theoretical Performance Evaluation
2.1. OAM Generation Using a Uniform Circular Array
2.2. Modulation and Demodulation
- OAM Shift Keying (OAMSK) [14]: This scheme simply puts binary data into an OAM mode. For example, bit “0” is mapped as OAM mode 1, while bit “1” is mapped as mode -1 (minus 1). OAMSK modulated signals can be demodulated by using the phase gradient method, an FFT (fast Fourier transform) based method, or ML (maximum likelihood) detection. The gradient method uses the phase difference between two receiving antennas to determine the OAM mode. The FFT-based method conducts the FFT process using a reception (Rx) UCA and chooses the maximum coefficients. ML detection selects the OAM mode with the closest distance to the received signal.
- OAM Division Multiplexing (OAMDM) [16]: This scheme uses OAM modes to carry multiple streams of data simultaneously. An OAM mode can carry one stream, similar to the way that one OFDM (orthogonal frequency division multiplexing) subcarrier can. This scheme potentially improves the spectrum efficiency. With it, OAMDM modulated signals are demodulated similar to the way they are with MIMO equalization techniques such as zero forcing or minimum mean square error equalization, assuming the channel information is available. Since OAM multiplexing is expected to be used under LOS environments with static channels such as wireless fronthaul/backhaul, simplified channel estimation using Equation (2) might be feasible.
2.3. Mode-Dependent Power Distribution
- Peak Rx Power Degradation: As the number of OAM modes increases, the radiation becomes wider, the angle from the beam axis at the peak Rx power becomes wider, and the SNR at its peak Rx power becomes smaller. Accordingly, the performance is degraded as the number of OAM modes increases.
- Non-identical Peak Rx Power Locations: The peak Rx power locations of each OAM mode are not identical because their radiation patterns are distinct. Therefore, the mode-dependent performance degradation becomes more severe when a single Rx UCA is used because some OAM modes might not have the peak Rx power at a certain location.
2.4. Evaluation
3. Beam Focusing Effect Using Dielectric Lens for OAM Multiplexing
3.1. Usage of Dielectric Lens for OAM Multiplexing
3.2. Experiments of OAM Multiplexing Using Dielectric Lens
4. Experimental Demonstration Wireless OAM Multiplexing Technology using 28 GHz
4.1. OAM Multiplexing Using Multiple UCAs
- Antenna Selection: Selecting a single Rx UCA that is not located at the null region of each OAM mode
- Receiver Diversity: Selecting multiple Rx UCAs to obtain Rx SNR enhancement by receiver diversity
4.2. OAM-MIMO Multiplexing Using Multiple UCAs
4.3. Experimental OAM Multiplexing Results Using Multiple UCAs
4.4. Experimental OAM-MIMO Multiplexing Results Using Multiple UCAs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yan, Y.; Xie, G.; Lavery, M.P.J.; Huang, H.; Ahmed, N.; Bao, C.; Ren, Y.; Cao, Y.; Li, L.; Zhao, Z.; et al. High-capacity millimeter-wave communications with orbital angular momentum multiplexing. Nat. Commun. 2014, 5, 4876. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Sasaki, H.; Fukumoto, H.; Hiraga, K.; Nakagawa, T. Orbital Angular Momentum (OAM) Multiplexing: An Enabler of a New Era of wireless Communications. IEICE Trans. Commun. 2017, E100-B, 1044–1063. [Google Scholar] [CrossRef]
- Yan, Y.; Li, L.; Zhao, Z.; Xie, G.; Wang, Z.; Ren, Y.; Ahmed, N.; Sajuyigbe, S.; Talwar, S.; Tur, M.; et al. 32-Gbit/s 60-GHz millimeter-wave wireless communication using orbital angular momentum and polarization multiplexing. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Lee, D.; Sakdejayont, T.; Sasaki, H.; Fukumoto, H.; Nakagawa, T. Performance evaluation of wireless communications using orbital angular momentum multiplexing. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016. [Google Scholar]
- Fukumoto, H.; Lee, D.; Sasaki, H.; Kaho, T.; Shiba, H. An experimental study on beam focusing effect using dielectric lens for OAM multiplexing. IEICE Tech. Rep. 2018, 117, 53–57. [Google Scholar]
- Lee, D.; Sasaki, H.; Fukumoto, H.; Yagi, Y.; Kaho, T.; Shiba, H.; Shimizu, T. Demonstration of an orbital angular momentum (OAM) multiplexing at 28 GHz. IEICE General Conf. 2018, B-5-90. [Google Scholar]
- Lee, D.; Sasaki, H.; Fukumoto, H.; Yagi, Y.; Kaho, T.; Shiba, H.; Shimizu, T. An experimental demonstration of 28 GHz band wireless OAM-MIMO (orbital angular momentum multi-input multi-output) multiplexing. In Proceedings of the IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018. [Google Scholar]
- Mari, E.; Spinello, F.; Oldoni, M.; Ravanelli, R.A.; Romanato, F.; Giuseppe, F.; Parisi, G. Near-field experimental verification of separation of OAM channels. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 556–558. [Google Scholar] [CrossRef]
- Willner, A.E. Communication with a twist. IEEE Spectrum 2016, 53, 34–39. [Google Scholar] [CrossRef]
- Mahmouli, F.E.; Walker, S.D. 4Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel. IEEE Wirel. Commun. Lett. 2013, 2, 223–226. [Google Scholar] [CrossRef]
- Cheng, L.; Hong, W.; Hao, Z. Generation of electromagnetic waves with arbitrary orbital angular momentum modes. Scientific Rep. 2014, 4, 4814. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Luo, J.; Zhang, X.; Gao, H.; Li, X.; Pu, M.; Gao, P.; Zhao, Z.; Lou, X. Generation and detection of orbital angular momentum via metasurface. Scientific Rep. 2016, 6, 24286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, C.; Chen, W.; Zhang, Z.; Li, Y.; Feng, Z. Generation of OAM Radio Waves Using Circular Vivaldi Antenna Array. Int. J. Antennas Propag. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Haskou, A.; Mary, P.; Hélard, M. Error probability on the orbital angular momentum detection. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 302–307. [Google Scholar]
- Opare, K.A.; Kuang, Y.; Kponyo, J.J.; Nwizege, K.S.; Enzhan, Z. The degree of freedom in wireless line-of-sight OAM multiplexing system using a circular array of receiving antenna. In Proceedings of the 2015 Fifth International Conference on Advanced Computing & Communication Technologies, Rohtak, Haryana, India, 21–22 February 2015. [Google Scholar]
- Opare, K.A.; Kuang, Y.; Kponyo, J.J.; Nwizege, K.S.; Enzhan, Z. Mode combination in an ideal wireless OAM-MIMO multiplexing system. IEEE Wirel. Commun. Lett. 2015, 4, 449–452. [Google Scholar] [CrossRef]
- Tian, H.; Liu, Z.; Xi, W.; Nie, G.; Liu, L.; Jiang, H. Beam axis detection and alignment for uniform circular array-based orbital angular momentum wireless communication. IET Commun. 2016, 10, 44–49. [Google Scholar] [CrossRef]
- Fukumoto, H.; Lee, D.; Sasaki, T.; Nakagawa, T. Beam divergence reduction using dielectric lens for orbital angular momentum based wireless communications. In Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016. [Google Scholar]
- Sasaki, H.; Lee, D.; Fukumoto, H.; Yagi, Y.; Kaho, T.; Shiba, H.; Shimizu, T. Experiment on Over-100-Gbps Wireless Transmission with OAM-MIMO Multiplexing System in 28-GHz Band. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018. [Google Scholar]
Parameter | Value | |
---|---|---|
Lens | Focal length: f | 0.30 m |
Diameter: DL | 0.30 m | |
UCA | Number of antenna elements | 12 |
Diameter: DT | 0.04 m | |
Distance between lens and UCA: a | 0.40 m | |
Others | Frequency | 28 GHz |
Distance between Tx and Rx: b | 3.12 m |
Parameter | Value | Parameter | Value |
---|---|---|---|
Center frequency | 28.5 GHz | OAM modes | −2, −1, 0, 1, 2 |
Signal bandwidth | 2 GHz | Number of streams | 5 |
Number of UCAs | 4 | Signal carrier | Single carrier |
Number of antenna elements in a UCA | 16 | Modulation | 64 QAM *1 |
Number of antenna elements | 65 | Channel coding | LDPC (DVB-S2) 3/4 |
Diameter of UCA | 24, 26, 48, 60 cm | Equalization | Frequency domain equalization |
Tx/Rx distance | 2.5 m | Block size | 256 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Center frequency | 28.5 GHz | OAM modes | −2, −1, 0, 1, 2 |
Signal bandwidth | 2 GHz | Number of streams | 11 |
Number of UCAs | 4 | Signal carrier | Single carrier |
Number of antenna elements in a UCA | 16 | Modulation | 16 QAM/64 QAM |
Number of antenna elements | 65 | Channel coding | LDPC (DVB-S2) 3/4, 5/6, 9/10 |
Diameter of UCA | 24, 26, 48, 60 cm | Equalization | Freq. domain equalization |
Tx/Rx distance | 10 m | Block size | 256 |
Mode −2 | Mode −1 | Mode 0 | Mode +1 | Mode +2 | ||
---|---|---|---|---|---|---|
Antenna selection | Tx antenna | UCA No. 4 | UCA No. 2 | UCA No. 0 | UCA No. 3 | UCA No. 1 |
Rx antenna | UCA No. 3 | UCA No. 4 | UCA No. 0 | UCA No. 3 | UCA No. 1 | |
BER (raw) | 0.0114 | 0.0228 | 0.0201 | 0.0192 | 0.0428 | |
BER (coded) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0024 | |
Receiver diversity | Tx antenna | UCA No. 4 | UCA No. 2 | UCA No. 0 | UCA No. 3 | UCA No. 1 |
Rx antenna | UCA No. 3 | UCA No. 2, No. 4 | UCA No. 0 | UCA No. 3 | UCA No. 1, No. 2 | |
BER (raw) | 0.0105 | 0.0015 | 0.0022 | 0.0278 | 0.0385 | |
BER (coded) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Sasaki, H.; Fukumoto, H.; Yagi, Y.; Shimizu, T. An Evaluation of Orbital Angular Momentum Multiplexing Technology. Appl. Sci. 2019, 9, 1729. https://doi.org/10.3390/app9091729
Lee D, Sasaki H, Fukumoto H, Yagi Y, Shimizu T. An Evaluation of Orbital Angular Momentum Multiplexing Technology. Applied Sciences. 2019; 9(9):1729. https://doi.org/10.3390/app9091729
Chicago/Turabian StyleLee, Doohwan, Hirofumi Sasaki, Hiroyuki Fukumoto, Yasunori Yagi, and Takashi Shimizu. 2019. "An Evaluation of Orbital Angular Momentum Multiplexing Technology" Applied Sciences 9, no. 9: 1729. https://doi.org/10.3390/app9091729
APA StyleLee, D., Sasaki, H., Fukumoto, H., Yagi, Y., & Shimizu, T. (2019). An Evaluation of Orbital Angular Momentum Multiplexing Technology. Applied Sciences, 9(9), 1729. https://doi.org/10.3390/app9091729