A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and Convolutional Neural Network
<p>Framework of the Continuous Wavelet Transform and Convolutional Neural Network-based Health Indicator (CWTCNN-HI)-based prognostics method.</p> "> Figure 2
<p>Max pooling transformation.</p> "> Figure 3
<p>Proposed CWTCNN-HI model for Remaining Useful Lifetime (RUL) estimation.</p> "> Figure 4
<p>Overview of PRONOSTIA [<a href="#B31-applsci-08-01102" class="html-bibr">31</a>] experimental platform.</p> "> Figure 5
<p>Vibration raw signal of bearing1_1.</p> "> Figure 6
<p>Time domain vibration signal and contour plot of wavelet power spectrum of bearing 1_1: (<b>a</b>) raw signal (normal condition); (<b>b</b>) wavelet power spectrum (normal condition); (<b>c</b>) raw signal (fault condition); (<b>d</b>) wavelet power spectrum (fault condition).</p> "> Figure 7
<p>Contour plots of wavelet power spectrum during the run-to-failure experiment of the training bearings.</p> "> Figure 8
<p>CWTCNN-HI of the six training datasets.</p> "> Figure 9
<p>RUL prediction result of bearing1_3.</p> "> Figure 10
<p>RUL prediction results of the other ten testing datasets.</p> "> Figure 11
<p>Dunn index for the testing datasets clustering.</p> "> Figure 12
<p>Clustering results of the testing datasets.</p> "> Figure 13
<p>Comparison of the actual RUL and the predicted RUL: (<b>a</b>) Bearing 1_3; (<b>b</b>) Bearing 2_7.</p> ">
Abstract
:1. Introduction
2. Time–Frequency Image Feature-Based HI
2.1. Continuous Wavelet Transform (CWT)
2.2. Basic Theory of CNN
2.3. CWTCNN-HI
3. Experiment and Analysis
3.1. Experimental System and Vibration Data
3.2. Extraction of Time—Frequency Image Features
3.3. CWTCNN-HI Construction
3.4. RUL Prediction Results
3.5. Comparing Related Works
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Li, X.; Ding, Q.; Sun, J.-Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Saf. 2018, 172, 1–11. [Google Scholar] [CrossRef]
- Guo, L.; Li, N.; Jia, F.; Lei, Y.; Lin, J. A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing 2017, 240, 98–109. [Google Scholar] [CrossRef]
- Lei, Y.; Li, N.; Gontarz, S.; Lin, J.; Radkowski, S.; Dybala, J. A model-based method for remaining useful life prediction of machinery. IEEE Trans. Reliab. 2016, 65, 1314–1326. [Google Scholar] [CrossRef]
- Hong, S.; Zhou, Z.; Zio, E.; Hong, K. Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method. Digit. Signal Process. 2014, 27, 159–166. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors 2017, 17, 273. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zhang, G.; Liu, Y.; Zhang, B.; Hu, C. Lithium-ion battery remaining useful life prediction with deep belief network and relevance vector machine. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 7–13. [Google Scholar]
- Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, B.; Han, Y.; Deng, L. Bearing performance degradation assessment based on time-frequency code features and SOM network. Meas. Sci. Technol. 2017, 28, 045601. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Li, N.; Lin, J. An improved fusion prognostics method for remaining useful life prediction of bearings. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 18–24. [Google Scholar]
- Zhang, B.; Zhang, L.; Xu, J. Degradation feature selection for remaining useful life prediction of rolling element bearings. Qual. Reliab. Eng. Int. 2016, 32, 547–554. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Zi, Y.; Jin, X.; Tsui, K.-L. A two-stage data-driven-based prognostic approach for bearing degradation problem. IEEE Trans. Ind. Inform. 2016, 12, 924–932. [Google Scholar] [CrossRef]
- Javed, K.; Gouriveau, R.; Zerhouni, N.; Nectoux, P. Enabling health monitoring approach based on vibration data for accurate prognostics. IEEE Trans. Ind. Electron. 2015, 62, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Qiu, H.; Iyer, N. Feature extraction for bearing prognostics and health management (PHM)—A Survey. Geofluids 2008, 11, 343–348. [Google Scholar]
- Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Fault diagnosis of ball bearings using continuous wavelet transform. Appl. Soft Comput. 2011, 11, 2300–2312. [Google Scholar] [CrossRef]
- Ocak, H.; Loparo, K.A.; Discenzo, F.M. Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: A method for bearing prognostics. J. Sound Vib. 2007, 302, 951–961. [Google Scholar] [CrossRef]
- Wen, C.; Zhou, C. The feature extraction of rolling bearing fault based on wavelet packet—Empirical mode decomposition and kurtosis rule. In Emerging Technologies for Information Systems, Computing, and Management; Wong, W.E., Ma, T., Eds.; Springer: New York, NY, USA, 2013; pp. 579–586. ISBN 978-1-4614-7010-6. [Google Scholar]
- Loutas, T.H.; Roulias, D.; Georgoulas, G. Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression. IEEE Trans. Reliab. 2013, 62, 821–832. [Google Scholar] [CrossRef]
- Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2013, 35, 108–126. [Google Scholar] [CrossRef]
- Soualhi, A.; Medjaher, K.; Zerhouni, N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression. IEEE Trans. Instrum. Meas. 2015, 64, 52–62. [Google Scholar] [CrossRef]
- Zhao, M.; Tang, B.; Tan, Q. Bearing remaining useful life estimation based on time-frequency representation and supervised dimensionality reduction. Measurement 2016, 86, 41–55. [Google Scholar] [CrossRef]
- Ren, L.; Cui, J.; Sun, Y.; Cheng, X. Multi-bearing remaining useful life collaborative prediction: A deep learning approach. Measurement 2017, 43, 248–256. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.E.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.E.; Jackel, L.D. Handwritten digit recognition with a back-propagation network. In Advances in Neural Information Processing Systems; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1990; pp. 396–404. [Google Scholar]
- Eren, L. Bearing fault detection by one-dimensional convolutional neural networks. Math. Probl. Eng. 2017, 2017, 8617315. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, J.; Duan, L.; Cheng, W. A multi-scale convolution neural network for featureless fault diagnosis. In Proceedings of the 2016 International Symposium on Flexible Automation (ISFA), Cleveland, OH, USA, 1–3 August 2016; pp. 65–70. [Google Scholar]
- Tyagi, S.; Panigrahi, S.K. A simple continuous wavelet transform method for detection of rolling element bearing faults and its comparison with envelope detection. Int. J. Sci. Res. 2017, 6, 1033–1040. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Z.; Chen, X. Gear fault diagnosis based on continuous wavelet transform. Mech. Syst. Signal Process. 2002, 16, 447–457. [Google Scholar] [CrossRef]
- Peng, Z.K.; Chu, F.L. Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography. Mech. Syst. Signal Process. 2004, 18, 199–221. [Google Scholar] [CrossRef]
- Liao, Y.; Zeng, X.; Li, W. Wavelet transform based convolutional neural network for gearbox fault classification. In Proceedings of the 2017 Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China, 9–12 July 2017; pp. 1–6. [Google Scholar]
- Guo, S.; Yang, T.; Gao, W.; Zhang, C. A novel fault diagnosis method for rotating machinery based on a convolutional neural network. Sensors 2018, 18, 1429. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Li, X.; Gao, L.; Zhang, Y. A new convolutional neural network based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 2017, 65, 5990–5998. [Google Scholar] [CrossRef]
- Nectoux, P.; Gouriveau, R.; Medjaher, K.; Ramasso, E.; Chebel-Morello, B.; Zerhouni, N.; Varnier, C. PRONOSTIA: An experimental platform for bearings accelerated degradation tests. In Proceedings of the IEEE International Conference on Prognostics and Health Management, Denver, Colorado, USA, June 2012; pp. 1–8. [Google Scholar]
- Daubechies, I. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992; ISBN 978-0-89871-274-2. [Google Scholar]
- Bouvrie, J. Notes on Convolutional Neural Networks. Available online: http://cogprints.org/5869/1/cnn_tutorial.pdf (accessed on 16 May 2018).
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Chollet, F. Keras: Deep Learning Library for Theano and Tensorflow. Available online: https://keras.io/ (accessed on 16 May 2018).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 16 May 2018).
- Benkedjouh, T.; Medjaher, K.; Zerhouni, N.; Rechak, S. Remaining useful life estimation based on nonlinear feature reduction and support vector regression. Eng. Appl. Artif. Intell. 2013, 26, 1751–1760. [Google Scholar] [CrossRef]
- Dunn, J.C. A Fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 1973, 3, 32–57. [Google Scholar] [CrossRef]
- Sutrisno, E.; Oh, H.; Vasan, A.S.S.; Pecht, M. Estimation of remaining useful life of ball bearings using data driven methodologies. In Proceedings of the 2012 IEEE Conference on Prognostics and Health Management, Denver, CO, USA, 18–21 June 2012; pp. 1–7. [Google Scholar]
Operational Conditions | Speed (rpm) | Load (N) | Training Dataset | Testing Dataset | ||
---|---|---|---|---|---|---|
Condition1 | 1800 | 4000 | Bearing1_1 | Bearing1_3 | Bearing1_4 | Bearing1_5 |
Bearing1_2 | Bearing1_6 | Bearing1_7 | ||||
Condition2 | 1650 | 4200 | Bearing2_1 | Bearing2_3 | Bearing2_4 | Bearing2_5 |
Bearing2_2 | Bearing2_6 | Bearing2_7 | ||||
Condition3 | 1500 | 5000 | Bearing3_1 | Bearing3_3 | ||
Bearing3_2 |
Testing Dataset | Current Time (s) | Actual RUL (s) | Predicted RUL (s) | Er (%) | ||||
---|---|---|---|---|---|---|---|---|
Sutrisno et al. [39] | Hong et al. [4] | Lei et al. [3] | Guo et al. [2] | Proposed Method | ||||
Bearing1_3 | 18,010 | 5730 | 5670 | 37 | −1.04 | −0.35 | 43.28 | 1.05 |
Bearing1_4 | 11,380 | 339 | 270 | 80 | −20.94 | 5.60 | 67.55 | 20.35 |
Bearing1_5 | 23,010 | 1610 | 1430 | 9 | −278.26 | 100.00 | −22.98 | 11.18 |
Bearing1_6 | 23,010 | 1460 | 950 | −5 | 19.18 | 28.08 | 21.23 | 34.93 |
Bearing1_7 | 15,010 | 7570 | 5360 | −2 | −7.13 | −19.55 | 17.83 | 29.19 |
Bearing2_3 | 12,010 | 7530 | 3220 | 64 | 10.49 | −20.19 | 37.84 | 57.24 |
Bearing2_4 | 6110 | 1390 | 1410 | 10 | 51.80 | 8.63 | −19.42 | −1.44 |
Bearing2_5 | 20,010 | 3090 | 3110 | −440 | 28.80 | 23.30 | 54.37 | −0.65 |
Bearing2_6 | 5710 | 1290 | 1840 | 49 | −20.93 | 58.91 | −13.95 | −42.64 |
Bearing2_7 | 1710 | 580 | 530 | −317 | 44.83 | 5.17 | −55.17 | 8.62 |
Bearing3_3 | 3510 | 820 | 830 | 90 | −3.66 | 40.24 | 3.66 | −1.22 |
Mean | 100.27 | 44.28 | 28.18 | 32.48 | 18.96 | |||
SD | 173.28 | 90.29 | 35.41 | 37.57 | 25.59 | |||
Score | 0.31 | 0.36 | 0.43 | 0.26 | 0.57 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, Y.; Baek, J.-G. A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and Convolutional Neural Network. Appl. Sci. 2018, 8, 1102. https://doi.org/10.3390/app8071102
Yoo Y, Baek J-G. A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and Convolutional Neural Network. Applied Sciences. 2018; 8(7):1102. https://doi.org/10.3390/app8071102
Chicago/Turabian StyleYoo, Youngji, and Jun-Geol Baek. 2018. "A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and Convolutional Neural Network" Applied Sciences 8, no. 7: 1102. https://doi.org/10.3390/app8071102
APA StyleYoo, Y., & Baek, J. -G. (2018). A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and Convolutional Neural Network. Applied Sciences, 8(7), 1102. https://doi.org/10.3390/app8071102